在内部循环使用Python池

时间:2016-03-02 19:38:25

标签: python multiprocessing pool

我正在尝试使用大量数据进行一些计算。计算包括简单的相关性,然而,我的数据量很大,我盯着我的电脑超过10分钟,根本没有输出。

然后我尝试使用multiprocessing.Pool。这是我现在的代码:

from multiprocessing import Pool
from haversine import haversine

def calculateCorrelation(data_1, data_2, dist):
    """
    Fill the correlation matrix between data_1 and data_2
    :param data_1: dictionary {key : [coordinates]}
    :param data_2: dictionary {key : [coordinates]}
    :param dist: minimum distance between coordinates to be considered, in kilometers.
    :return: numpy array containing the correlation between each complaint category.
    """
    pool = Pool(processes=20)

    data_1 = collections.OrderedDict(sorted(data_1.items()))
    data_2 = collections.OrderedDict(sorted(data_2.items()))
    data_1_size = len(data_1)                                          
    data_2_size = len(data_2)

    corr = numpy.zeros((data_1_size, data_2_size))

    for index_1, key_1 in enumerate(data_1):
        for index_2, key_2 in enumerate(data_2):  # Forming pairs
            type_1 = data_1[key_1]  # List of data in data_1 of type *i*
            type_2 = data_2[key_2]  # List of data in data_2 of type *j*
            result = pool.apply_async(correlation, args=[type_1, type_2, dist])
            corr[index_1, index_2] = result.get()
    pool.close()
    pool.join()


def correlation(type_1, type_2, dist):
    in_range = 0
    for l1 in type_2:      # Coordinates of a data in data_1
        for l2 in type_2:  # Coordinates of a data in data_2
            p1 = (float(l1[0]), float(l1[1]))
            p2 = (float(l2[0]), float(l2[1]))
            if haversine(p1, p2) <= dist:  # Distance between two data of types *i* and *j*
                in_range += 1              # Number of data in data_2 inside area of data in data_1
        total = float(len(type_1) * len(type_2))
        if total != 0:
            return in_range / total  # Correlation between category *i* and *j*

corr = calculateCorrelation(permiters_per_region, complaints_per_region, 20)

然而,速度并没有提高。似乎没有进行并行处理:

enter image description here

因为只有一个线程集中了几乎所有的工作。在某些时候,所有Python工作者都使用0.0%的CPU,而一个线程使用100%。

我错过了什么吗?

1 个答案:

答案 0 :(得分:3)

在生成作业的循环中,您调用apply_async然后等待它完成,这有效地序列化了工作。您可以将结果对象添加到队列中,并在完成所有调度工作后等待(参见下文),或者甚至转到map方法。

def calculateCorrelation(data_1, data_2, dist):
    """
    Fill the correlation matrix between data_1 and data_2
    :param data_1: dictionary {key : [coordinates]}
    :param data_2: dictionary {key : [coordinates]}
    :param dist: minimum distance between coordinates to be considered, in kilometers.
    :return: numpy array containing the correlation between each complaint category.
    """
    pool = Pool(processes=20)
    results = []

    data_1 = collections.OrderedDict(sorted(data_1.items()))
    data_2 = collections.OrderedDict(sorted(data_2.items()))
    data_1_size = len(data_1)                                          
    data_2_size = len(data_2)

    corr = numpy.zeros((data_1_size, data_2_size))

    for index_1, key_1 in enumerate(data_1):
        for index_2, key_2 in enumerate(data_2):  # Forming pairs
            type_1 = data_1[key_1]  # List of data in data_1 of type *i*
            type_2 = data_2[key_2]  # List of data in data_2 of type *j*
            result = pool.apply_async(correlation, args=[type_1, type_2, dist])
            results.append((result, index_1, index_2))
    for result, index_1, index_2 in results:
        corr[index_1, index_2] = result.get()
    pool.close()
    pool.join()