计算f(i)的函数

时间:2016-03-02 11:10:19

标签: function fibonacci

当i是正整数时,有一个函数f(i)满足以下条件。

f(0) = 0,
f(1) = 1
f(i) = f(i-1) + f(i-2)

所以,基于以上所述,我想写一个程序来确定f(i)。 并编写一个程序来确定f(1000)。

4 个答案:

答案 0 :(得分:2)

由于您似乎打开了编程语言,我选择了python,这对于这些事情很有用。

您可以这样做:

def f(i):
    if i == 0:
        return 0
    elif i == 1:
        return 1
    return f(i-1)+f(i-2)

如果您想更加高效,请使用迭代器:

def f():
    a, b = 0, 1
    while True:            
        yield a            
        a, b = b, a + b

代码运行速度非常快:

for i, val in enumerate(f()):
    if i == 1000:
        print val
        break

并返回您想要的值f(1000),即:

  

43466557686937456435688527675040625802564660517371780402481729089536555417949051890403879840079255169295922593080322634775209689623239873322471161642996440906533187938298969649928516003704476137795166849228875

@DmitryBychenko:你返回的值实际上是f(999)。

@MartinEvans:你的代码实际上是不正确的(关闭1)。一个显而易见的方法是f(1)和f(2)返回的值是错误的:

>>> def f(i):
...     a,b = 0, 1
...     for i in range(i-1):
...             a,b = b, a+b
...     return a
... 
>>> f(0)
0
>>> f(1)
0
>>> f(2)
1
>>> f(3)
1

答案 1 :(得分:1)

第100个Fibonacci数是巨大值,因此需要BigInteger(C#)或其类似物。 C#实现可以是这样的(我怀疑它是否会被接受作为家庭作业代码)。

private static IEnumerable<BigInteger> fibo() {
  yield return 0;
  yield return 1;

  BigInteger first = 0;
  BigInteger second = 1;

  while (true) {
    BigInteger result = first + second;

    first = second;
    second = result;

    yield return result;
  }
}

// Skip(1000) since it's defined that f(0) == 0 - unusual sequence starting;
// in mathematics sequences usually started from the 1st item
Console.Write(fibo().Skip(1000).FirstOrDefault().ToString());

答案是

  

43466557686937456435688527675040625802564660517371780402481729089536555417949051890403879840079255169295922593080322634775209689623239873322471161642996440906533187938298969649928516003704476137795166849228875

答案 2 :(得分:1)

以下Python 3.0脚本将起作用:

def f(i):
    a, b = 0, 1

    for i in range(i):
        a, b = b, a + b

    return a

print(f(0))
print(f(1))
print(f(2))
print(f(3))
print(f(1000))

给你:

0
1
1
2

  

43466557686937456435688527675040625802564660517371780402481729089536555417949051890403879840079255169295922593080322634775209689623239873322471161642996440906533187938298969649928516003704476137795166849228875

答案 3 :(得分:0)

显然,这需要bc:

#!/usr/bin/bc --quiet

define fib(n) {
auto a,b,i;
if(n<2)return n;a=0;b=1;for(i=1;i<n;++i){c=a+b;a=b;b=c}return b;}

print fib(1000), "\n"
quit