从另一个数据帧替换dataframe中的某个值

时间:2016-03-01 17:32:21

标签: r lookup qdap

我有两个数据框:

df1 <- data.frame(id = c("LABEL1", "LABEL2", "LABEL3", "LABEL4", "LABEL5", "LABEL6"),matrix(1:60,6,10))
df1[c(4:6), c(2:4)] = NA

df2 = data.frame(id = c( "LABEL3", "LABEL4", "LABEL5", "LABEL6"),matrix(seq(100,10000, length.out = 32),4,8))

我想使用键值=&#39; id&#39;来查找DF2中DF1的缺失值。这是所需的输出: enter image description here

以下是我尝试的方法: 1. merge:但我得到X1:X3的重复列。 2.匹配:

df1[,2]= df2[,2][match(df1$id, df2$id)] 

但我会在DF1中获得标签3。 3.从qdap包中查找:

library(qdap)
apply(df1, 2, lookup, df2)

与方法2相同的结果。

谢谢!

2 个答案:

答案 0 :(得分:2)

您可以使用tidyr处理整洁的数据格式,然后使用dplyr来合并表格

library(dplyr)
library(tidyr)

以管道

的一种方式
df1 %>% 
  mutate(id = as.character(id)) %>%
  gather(key = "col", value = "val", -id) %>%
  left_join(df2 %>% 
                mutate(id = as.character(id)) %>%
                gather(key = "col", value = "val", -id), 
            by =c("id", "col")) %>%
  transmute(id, col, val = ifelse(is.na(val.x), val.y, val.x)) %>%
  spread(col, val) %>%
  select(id, num_range("X", 1:10))
#>       id        X1       X2       X3 X4 X5 X6 X7 X8 X9 X10
#> 1 LABEL1    1.0000    7.000   13.000 19 25 31 37 43 49  55
#> 2 LABEL2    2.0000    8.000   14.000 20 26 32 38 44 50  56
#> 3 LABEL3    3.0000    9.000   15.000 21 27 33 39 45 51  57
#> 4 LABEL4  419.3548 1696.774 2974.194 22 28 34 40 46 52  58
#> 5 LABEL5  738.7097 2016.129 3293.548 23 29 35 41 47 53  59
#> 6 LABEL6 1058.0645 2335.484 3612.903 24 30 36 42 48 54  60

逐步解释

# id as character instead of factor
df1 <- df1 %>% mutate(id = as.character(id))
# tidy data
df1 <- df1 %>% gather(key = "col", value = "val", -id)
# print result as dplyr tbl
df1 %>% as.tbl()
#> Source: local data frame [60 x 3]
#> 
#>        id   col   val
#>     (chr) (chr) (int)
#> 1  LABEL1    X1     1
#> 2  LABEL2    X1     2
#> 3  LABEL3    X1     3
#> 4  LABEL4    X1    NA
#> 5  LABEL5    X1    NA
#> 6  LABEL6    X1    NA
#> 7  LABEL1    X2     7
#> 8  LABEL2    X2     8
#> 9  LABEL3    X2     9
#> 10 LABEL4    X2    NA
#> ..    ...   ...   ...
# idem on df2
df2 <- df2 %>% 
  mutate(id = as.character(id)) %>%
  tidyr::gather(key = "col", value = "val", -id)
# print result as dplyr tbl
df2 %>% as.tbl()
#> Source: local data frame [32 x 3]
#> 
#>        id   col       val
#>     (chr) (chr)     (dbl)
#> 1  LABEL3    X1  100.0000
#> 2  LABEL4    X1  419.3548
#> 3  LABEL5    X1  738.7097
#> 4  LABEL6    X1 1058.0645
#> 5  LABEL3    X2 1377.4194
#> 6  LABEL4    X2 1696.7742
#> 7  LABEL5    X2 2016.1290
#> 8  LABEL6    X2 2335.4839
#> 9  LABEL3    X3 2654.8387
#> 10 LABEL4    X3 2974.1935
#> ..    ...   ...       ...

# join only id and col level of df1 with df2
new.df <- left_join(df1, df2, by = c("id", "col"))
# print result as dplyr tbl
new.df %>% as.tbl()
#> Source: local data frame [60 x 4]
#> 
#>        id   col val.x     val.y
#>     (chr) (chr) (int)     (dbl)
#> 1  LABEL1    X1     1        NA
#> 2  LABEL2    X1     2        NA
#> 3  LABEL3    X1     3  100.0000
#> 4  LABEL4    X1    NA  419.3548
#> 5  LABEL5    X1    NA  738.7097
#> 6  LABEL6    X1    NA 1058.0645
#> 7  LABEL1    X2     7        NA
#> 8  LABEL2    X2     8        NA
#> 9  LABEL3    X2     9 1377.4194
#> 10 LABEL4    X2    NA 1696.7742
#> ..    ...   ...   ...       ...

#replace NA in col val.x from df1 by value val.y of df2
# and only keep id, col and new column val
new.df <- new.df %>% transmute(id, col, val = ifelse(is.na(val.x), val.y, val.x)) 
new.df %>% as.tbl()
#> Source: local data frame [60 x 3]
#> 
#>        id   col       val
#>     (chr) (chr)     (dbl)
#> 1  LABEL1    X1    1.0000
#> 2  LABEL2    X1    2.0000
#> 3  LABEL3    X1    3.0000
#> 4  LABEL4    X1  419.3548
#> 5  LABEL5    X1  738.7097
#> 6  LABEL6    X1 1058.0645
#> 7  LABEL1    X2    7.0000
#> 8  LABEL2    X2    8.0000
#> 9  LABEL3    X2    9.0000
#> 10 LABEL4    X2 1696.7742
#> ..    ...   ...       ...

# put back data in wide format
new.df %>% 
  spread(col, val) %>%
  select(id, num_range("X", 1:10)) # put column in same order as df1
#>       id        X1       X2       X3 X4 X5 X6 X7 X8 X9 X10
#> 1 LABEL1    1.0000    7.000   13.000 19 25 31 37 43 49  55
#> 2 LABEL2    2.0000    8.000   14.000 20 26 32 38 44 50  56
#> 3 LABEL3    3.0000    9.000   15.000 21 27 33 39 45 51  57
#> 4 LABEL4  419.3548 1696.774 2974.194 22 28 34 40 46 52  58
#> 5 LABEL5  738.7097 2016.129 3293.548 23 29 35 41 47 53  59
#> 6 LABEL6 1058.0645 2335.484 3612.903 24 30 36 42 48 54  60

答案 1 :(得分:0)

可能有人有比我更好的方法,但这应该有效。这确实假设列的顺序是相同的,所以要小心。

row.matches = match(df1$id, df2$id)
nas = which(is.na(df1), arr.ind = TRUE)
replacements = nas
replacements[ ,1] = row.matches[nas[ ,1]]
df1[nas] = df2[replacements]

基本上,我所做的就是找到匹配的行和df1中出现NA的索引。使用匹配的行向量替换这些NA索引的行索引,并将df1中的这些值替换为df2中的相应值。