我使用的是CIFAR10示例。我按照提供的代码训练了网络。培训成功完成。由于我想在我的数据集上仅评估每个示例一次,因此我将cifar10_input.py中的输入修改为以下内容。
def inputs(eval_data, data_dir, batch_size):
filename = os.path.join(data_dir, TEST_FILE)
filename_queue = tf.train.string_input_producer([filename],num_epochs=1)
image, label = read_and_decode(filename_queue)
float_image = tf.image.per_image_whitening(image)
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_EVAL *
min_fraction_of_examples_in_queue)
images, label_batch = tf.train.batch(
[image, label],
batch_size=batch_size,
num_threads=1,
capacity=min_queue_examples + 3 * batch_size)
tf.image_summary('images', images)
return images, tf.reshape(label_batch, [batch_size])
我已将问题分离到以下内容:
tf.train_string_input_producer([filename],num_epochs = 1)
如果我没有设置num_epochs = 1,那么一切正常。如果我这样做,我会收到以下错误。
0x2cf2700 Compute status: Not found: Tensor name "input_producer/limit_epochs/epochs" not found in checkpoint files /home/jkschin/tensorflow/my_code/data/svhn/train/model.ckpt-8000
感谢您的帮助!
编辑3 @mrry:它仍然失败。这是追踪。
Traceback (most recent call last):
File "cnn_eval.py", line 148, in <module>
tf.app.run()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/default/_app.py", line 30, in run
sys.exit(main(sys.argv))
File "cnn_eval.py", line 144, in main
evaluate()
File "cnn_eval.py", line 119, in evaluate
saver = tf.train.Saver([v for v in variables_to_restore if v.name != "input_producer/limit_epochs/epochs"])
AttributeError: 'unicode' object has no attribute 'name'
编辑4 @mrry:
softmax_linear /偏压/ ExponentialMovingAverage
conv2/biases/ExponentialMovingAverage
local4/biases/ExponentialMovingAverage
local3/biases/ExponentialMovingAverage
softmax_linear/weights/ExponentialMovingAverage
conv1/biases/ExponentialMovingAverage
local4/weights/ExponentialMovingAverage
conv2/weights/ExponentialMovingAverage
input_producer/limit_epochs/epochs
local3/weights/ExponentialMovingAverage
conv1/weights/ExponentialMovingAverage
Traceback (most recent call last):
File "cnn_eval.py", line 148, in <module>
tf.app.run()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/default/_app.py", line 30, in run
sys.exit(main(sys.argv))
File "cnn_eval.py", line 144, in main
evaluate()
File "cnn_eval.py", line 119, in evaluate
saver = tf.train.Saver([v for v in variables_to_restore if v != "input_producer/limit_epochs/epochs"])
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 784, in __init__
restore_sequentially=restore_sequentially)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 437, in build
vars_to_save = self._ValidateAndSliceInputs(names_to_variables)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 340, in _ValidateAndSliceInputs
names_to_variables = self._VarListToDict(names_to_variables)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 314, in _VarListToDict
raise TypeError("Variable to save is not a Variable: %s" % var)
TypeError: Variable to save is not a Variable: Tensor("Const:0", shape=(), dtype=string)
编辑5 @mrry:
saver = tf.train.Saver([tf.Variable(0.0,validate_shape=False,name=v) for v in variables_to_restore if v != "input_producer/limit_epochs/epochs"])
0x21d0cb0 Compute status: Invalid argument: Assign requires shapes of both tensors to match. lhs shape= [] rhs shape= [10]
[[Node: save/Assign_8 = Assign[T=DT_FLOAT, use_locking=true, validate_shape=true, _device="/job:localhost/replica:0/task:0/gpu:0"](softmax_linear/biases/ExponentialMovingAverage, save/restore_slice_8/_20)]]
答案 0 :(得分:3)
TL; DR:在cifar10_eval.py
中,更改保护程序构造函数,使其成为:
saver = tf.train.Saver([v for v in variables_to_restore
if v != "input_producer/limit_epochs/epochs"])
出现此问题是因为tf.train.string_input_producer()
在"input_producer/limit_epochs/epochs"
参数不是num_epochs
时在内部创建变量(称为None
)。在cifar10_eval.py
和tf.train.Saver
is created中,它使用tf.all_variables()
,其中包含来自tf.nn.string_input_producer()
的隐式创建的变量。此变量列表确定TensorFlow在检查点文件中查找的名称集。
目前,除了名称之外,没有很好的方式来引用隐式创建的变量。因此,最好的解决方法是按名称从Saver
构造函数中排除变量。
答案 1 :(得分:0)
消除隐式变量cd /D D:\program\ser\conf
D:\program\ser\int.exe D:\program\ser\conf\script.txt
的另一种方法是仅加载可训练变量:
"input_producer/limit_epochs/epochs"