如何从python数据框中为PANDAS中的ols回归选择特定行?
我有一个包含1,000行的pandas数据帧。我想在B + C列上对前10行的A列进行回归。当我输入:
["Apple", "Banana"]
// <input id="Apple"... data-makes="Pie,Dumpling,Cider">
// <input id="Banana" ... data-makes="Bread,Republic"
var output = [];
var fruits = ["Apple", "Banana"];
for (i=0; i < fruits.length; ++i)
{
members = document.getElementById(fruits[i]).getAttribute("data-makes");
tmp = members.split(",");
for (k=0; k < tmp.length; ++k)
{
output[i][k+1] = tmp[k];
}
}
我得到了行991-1000的回归结果。如何指定我想要FIRST(或第二行等)10行?
提前致谢。
答案 0 :(得分:0)
我认为您可以使用iloc
:
mod = pd.ols(y=df['A'].iloc[2:12], x=df[['B','C']].iloc[2:12], window=10)
或ix
:
mod = pd.ols(y=df.ix[2:12, 'A'], x=df.ix[2:12, ['B', 'C']], window=10)
如果您需要所有群组,请使用range
:
for i in range(10):
#print i, i+10
mod = pd.ols(y=df['A'].iloc[i:i + 10], x=df[['B','C']].iloc[i:i + 10], window=10)
如果您需要有关ols
的帮助,请在help(pd.ols)
中尝试IPython
,因为pandas docs中的此功能缺失:
In [79]: help(pd.ols)
Help on function ols in module pandas.stats.interface:
ols(**kwargs)
Returns the appropriate OLS object depending on whether you need
simple or panel OLS, and a full-sample or rolling/expanding OLS.
Will be a normal linear regression or a (pooled) panel regression depending
on the type of the inputs:
y : Series, x : DataFrame -> OLS
y : Series, x : dict of DataFrame -> OLS
y : DataFrame, x : DataFrame -> PanelOLS
y : DataFrame, x : dict of DataFrame/Panel -> PanelOLS
y : Series with MultiIndex, x : Panel/DataFrame + MultiIndex -> PanelOLS
Parameters
----------
y: Series or DataFrame
See above for types
x: Series, DataFrame, dict of Series, dict of DataFrame, Panel
weights : Series or ndarray
The weights are presumed to be (proportional to) the inverse of the
variance of the observations. That is, if the variables are to be
transformed by 1/sqrt(W) you must supply weights = 1/W
intercept: bool
True if you want an intercept. Defaults to True.
nw_lags: None or int
Number of Newey-West lags. Defaults to None.
nw_overlap: bool
Whether there are overlaps in the NW lags. Defaults to False.
window_type: {'full sample', 'rolling', 'expanding'}
'full sample' by default
window: int
size of window (for rolling/expanding OLS). If window passed and no
explicit window_type, 'rolling" will be used as the window_type
Panel OLS options:
pool: bool
Whether to run pooled panel regression. Defaults to true.
entity_effects: bool
Whether to account for entity fixed effects. Defaults to false.
time_effects: bool
Whether to account for time fixed effects. Defaults to false.
x_effects: list
List of x's to account for fixed effects. Defaults to none.
dropped_dummies: dict
Key is the name of the variable for the fixed effect.
Value is the value of that variable for which we drop the dummy.
For entity fixed effects, key equals 'entity'.
By default, the first dummy is dropped if no dummy is specified.
cluster: {'time', 'entity'}
cluster variances
Examples
--------
# Run simple OLS.
result = ols(y=y, x=x)
# Run rolling simple OLS with window of size 10.
result = ols(y=y, x=x, window_type='rolling', window=10)
print(result.beta)
result = ols(y=y, x=x, nw_lags=1)
# Set up LHS and RHS for data across all items
y = A
x = {'B' : B, 'C' : C}
# Run panel OLS.
result = ols(y=y, x=x)
# Run expanding panel OLS with window 10 and entity clustering.
result = ols(y=y, x=x, cluster='entity', window_type='expanding', window=10)
Returns
-------
The appropriate OLS object, which allows you to obtain betas and various
statistics, such as std err, t-stat, etc.