该剧本基本上是根据他们借来的书(代码)来衡量学生之间的关系。因此,我使用ete2包为不同类型的书籍构建了一棵树。现在我尝试编写一段代码,从树和csv文件中获取数据,并通过函数关系进行一些数据分析.csv文件包含超过50,000行。问题是运行代码需要很长时间(大约7天),而它只占我计算机CPU和内存的10%到20%。
以下是我使用过的csv文件示例:
ID Code Count
1 A1... 6
1 A2... 5
2 A.... 4
2 D.... 1
2 A1... 2
3 D.... 5
3 D1... 3
3 D2... 5
以下是代码:
from ete2 import Tree
import pandas as pd
import numpy as np
from __future__ import division
import math
data= pd.read_csv('data.csv', names=['ID','Code', 'Count'])
codes_list= list (set(data['Code']))
total_codes= data.shape[0]
students_list= list (set(data['ID']))
####################################
# generate the tree
t = Tree (".....;", format =0)
for i in codes_list:
if '....' in i:
node = t.search_nodes(name = '.....')
node[0].add_child(name= i)
for i in codes_list:
if '...' in i and '....' not in i:
if i[0]+'....' in codes_list:
node = t.search_nodes(name = i[0]+'....')
node[0].add_child(name= i)
else:
node = t.search_nodes(name = '.....')
node[0].add_child(name= i)
# save the tree in a file
t.write( outfile= file_path + "Codes_tree.nh", format =3)
return t.get_ascii(show_internal=True)
####################################
def relationship(code1,code2):
code1_ancestors= t.search_nodes(name=code1)[0].get_ancestors()
code2_ancestors=t.search_nodes(name=code2)[0].get_ancestors(
common_ancestors = []
for a1 in code1_ancestors:
for a2 in code2_ancestors:
if a1==a2:
common_ancestors.append(a1)
IC_values = []
for ca in common_ancestors:
code_descendants=[]
for gd in ca.get_descendants():
code_descendants.append(gd.name)
code_descendants.append(ca)
frequency= 0
for k in code_descendants:
frequency= frequency + code_count.Count[k]
IC = - (math.log (frequency / float (total_codes)))
IC_values.append (IC)
IC_max= max(IC_values)
return IC_max
##################
relationship_matrix = pd.DataFrame(index=[students_list], columns=[students_list])
for student in students_list:
p1= list (self.data.Code[data.ID==student])
for student1 in students_list:
p2= list data.Code[data.PID==student1])
student_l=[]
for l in p1:
for m in p2:
student_l.append(relationship(l,m))
max_score = np.max(np.array(student_l).astype(np.float))
relationship_matrix.loc[student,student1] = max_score
print relationship_matrix
答案 0 :(得分:0)
您可以执行一些“优化”,以下是我可以快速发现的一些示例(假设extension CollectionType where Generator.Element: Equatable,
Generator.Element: NotAnyObject { /*...*/ }
,code1_ancestors
等等是列表或等效内容):
code2_ancestors
可以通过以下方式加快:
common_ancestors = []
for a1 in code1_ancestors:
for a2 in code2_ancestors:
if a1==a2:
common_ancestors.append(a1)
并且提到你的for循环实际上最终可能会有共同祖先的重复。
或者这个:
set(code1_ancestors)&set(code2_ancestors)
可以通过以下方式改进:
code_descendants=[]
for gd in ca.get_descendants():
code_descendants.append(gd.name)
或者这也是:
code_descendants = [gf.name for in ca.get_descendants()]
可以转为:
frequency= 0
for k in code_descendants:
frequency= frequency + code_count.Count[k]
基本上试图避免迭代地做事,即frequency = code_count.loc[code_descendants, "Count"].sum()
循环,并尝试使用完成整个numpy数组的操作(pandas数据帧的底层结构)。
答案 1 :(得分:0)
我没有看到Tree类的声明,但是在关系()的前两行中引用了一个。
您应该收到“NameError:name't'未定义”