对于示例数据框:
df <- structure(list(area = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L,
4L, 4L, 4L), .Label = c("a1", "a2", "a3", "a4"), class = "factor"),
result = c(0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L,
1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L),
weight = c(0.5, 0.8, 1, 3, 3.4, 1.6, 4, 1.6, 2.3, 2.1, 2,
1, 0.1, 6, 2.3, 1.6, 1.4, 1.2, 1.5, 2, 0.6, 0.4, 0.3, 0.6,
1.6, 1.8)), .Names = c("area", "result", "weight"), class = "data.frame", row.names = c(NA,
-26L))
我试图隔离具有最高和最低区域的区域,然后生成加权交叉表,然后用于计算风险差异。
df.summary <- setDT(df)[,.(.N, freq.1 = sum(result==1), result = weighted.mean((result==1),
w = weight)*100), by = area]
#Include only regions with highest or lowest percentage
df.summary <- data.table(df.summary)
incl <- df.summary[c(which.min(result), which.max(result)),area]
df.new <- df[df$area %in% incl,]
incl
'incl'有两个我想要的区域,但仍然是四个级别:
[1] a2 a3
Levels: a1 a2 a3 a4
我如何摆脱这些关卡?我想做的后续分析只需要两个层次以及区域。有什么想法吗?
答案 0 :(得分:2)
我在网络上的其他地方发现了这一点(例如Problems with levels in a xtab in R)
df.new$area <- factor(df.new$area)
有效!
希望它对其他人有用。