这就是我的数据框架:
df <- read.table(text='
Name ActivityType ActivityDate
John Email 2014-01-01
John Webinar 2014-01-05
John Webinar 2014-01-20
John Email 2014-04-20
Tom Email 2014-01-01
Tom Webinar 2014-01-05
Tom Webinar 2014-01-20
Tom Email 2014-04-20
', header=T, row.names = NULL)
我有这个包含不同日期的向量x
x<- c("2014-01-03","2014-01-25","2015-05-27")
。我想以一种在x向量中包含这些日期的方式在原始数据框中插入行。这就是输出应该是这样的:
Name ActivityType ActivityDate
John Email 2014-01-01
John NA 2014-01-03
John Webinar 2014-01-05
John Webinar 2014-01-20
John NA 2014-01-25
John Email 2014-04-20
John NA 2015-05-27
Tom Email 2014-01-01
Tom NA 2014-01-03
Tom Webinar 2014-01-05
Tom Webinar 2014-01-20
Tom NA 2014-01-25
Tom Email 2014-04-20
Tom NA 2015-05-27
真诚地感谢您的帮助!
答案 0 :(得分:4)
看起来你已经为每个人添加了一个“新”日期,对吗?
在这种情况下,您可以将x
变为data.frame
,然后合并/加入
## original dataframe
df <- data.frame(Name = c(rep("John", 4), rep("Tom", 4)),
ActivityType = c("Email","Web","Web","Email","Email","Web","Web", "Email"),
ActivityDate = c("2014-01-01","2014-05-01","2014-20-01","2014-20-04","2014-01-01","2014-05-01","2014-20-01","2014-20-04"))
## Turning x into a dataframe.
x <- data.frame(ActivityDate = rep(c("2014-01-03","2014-01-25","2015-05-27"), 2),
Name = rep(c("John","Tom"), 3))
merge(df, x, by=c("Name", "ActivityDate"), all=T)
# Name ActivityDate ActivityType
# 1 John 2014-01-01 Email
# 2 John 2014-05-01 Web
# 3 John 2014-20-01 Web
# 4 John 2014-20-04 Email
# 5 John 2014-01-03 <NA>
# 6 John 2014-01-25 <NA>
# 7 John 2015-05-27 <NA>
# 8 Tom 2014-01-01 Email
# 9 Tom 2014-05-01 Web
# 10 Tom 2014-20-01 Web
# 11 Tom 2014-20-04 Email
# 12 Tom 2014-01-03 <NA>
# 13 Tom 2014-01-25 <NA>
# 14 Tom 2015-05-27 <NA>
<强>更新强>
由于您遇到了内存问题,因此可以使用data.table
library(data.table)
dt <- as.data.table(df)
x_dt <- as.data.table(x)
merge(dt, x_dt, by=c("Name","ActivityDate"), all=T)
或者,如果您不期待merge
,可以rbind
使用data.table
的{{1}}
rbindlist
更新2
要生成具有16000个uniqe名称的rbindlist(list(dt, x_dt), fill=TRUE) ## fill sets the 'ActivityType' to NA in X
(我在这里使用了数字,但原理是相同的)和30个日期
x
答案 1 :(得分:3)
1)expand.grid 使用expand.grid
创建一个数据框adds
,其中包含要添加的行,然后使用rbind
合并df
}和adds
将ActivityDate
列转换为"Date"
类。然后排序。没有包使用。
adds <- expand.grid(Name = levels(df$Name), ActivityType = NA, ActivityDate = x)
both <- transform(rbind(df, adds), ActivityDate = as.Date(ActivityDate))
o <- with(both, order(Name, ActivityDate))
both[o, ]
,并提供:
Name ActivityType ActivityDate
1 John Email 2014-01-01
9 John <NA> 2014-01-03
2 John Webinar 2014-01-05
3 John Webinar 2014-01-20
11 John <NA> 2014-01-25
4 John Email 2014-04-20
13 John <NA> 2015-05-27
5 Tom Email 2014-01-01
10 Tom <NA> 2014-01-03
6 Tom Webinar 2014-01-05
7 Tom Webinar 2014-01-20
12 Tom <NA> 2014-01-25
8 Tom Email 2014-04-20
14 Tom <NA> 2015-05-27
2)sqldf 这会将add和df上传到它动态创建的sqlite数据库,然后执行sql查询并下载结果。计算发生在R之外,因此它可能适用于您的大数据。
adds <- data.frame(Name = NA, ActivityDate = x)
library(sqldf)
sqldf("select *
from (select *
from df
union
select a.Name, NULL ActivityType, ActivityDate
from (select distinct Name from df) a
cross join adds b
) order by 1, 3"
)
,并提供:
Name ActivityType ActivityDate
1 John Email 2014-01-01
2 John <NA> 2014-01-03
3 John Webinar 2014-01-05
4 John Webinar 2014-01-20
5 John <NA> 2014-01-25
6 John Email 2014-04-20
7 John <NA> 2015-05-27
8 Tom Email 2014-01-01
9 Tom <NA> 2014-01-03
10 Tom Webinar 2014-01-05
11 Tom Webinar 2014-01-20
12 Tom <NA> 2014-01-25
13 Tom Email 2014-04-20
14 Tom <NA> 2015-05-27