我遇到了我认为可能是Coq 8.4pl5中的错误。鉴于此证明状态:
1 subgoal
st : state
a : sinstr
a0 : list sinstr
b : list sinstr
IHa : forall stack : list nat,
s_execute st stack (a0 ++ b) = s_execute st (s_execute st stack a0) b
stack : list nat
======================== ( 1 / 1 )
s_execute st stack ((a :: a0) ++ b) =
s_execute st (s_execute st stack (a :: a0)) b
Coq允许我apply IHa
。当我这样做时,它会释放目标并证明定理。
这是不正确的统一(我以为是这样),如果是的话,是否已报告此问题?
如果没有,我该如何报道呢?我知道Coq用于高保证软件,我相信尽管这不是最新版本,但它并不是一个特别老的版本。因此,即使在以后的版本中修复了它,也可以确保人们知道此版本的Coq中确实存在此问题。
作为参考,我已经将代码缩小到了这一点(我还没有尝试进一步缩小代码,因为我不完全理解可能导致这种情况的原因)。有问题的apply
位于倒数第二行(注释中包含所有星号):
(** aexp **)
Require Import Coq.Arith.Peano_dec.
Inductive id : Type :=
| Id : nat -> id.
Theorem eq_id_dec : forall a b : id,
{a = b} + {a <> b}.
Proof.
intros.
case_eq a.
case_eq b.
intros.
destruct (eq_nat_dec n0 n).
left. auto.
right. unfold not. intros. inversion H1. contradiction.
Qed.
Definition state : Type := id -> nat.
Definition empty_state : state :=
fun _ => 0.
Definition update (st : state) (i : id) (v : nat) : state :=
fun j => if eq_id_dec j i
then v
else st j.
Inductive aexp : Type :=
| AId : id -> aexp
| ANum : nat -> aexp
| APlus : aexp -> aexp -> aexp
| AMinus : aexp -> aexp -> aexp
| AMult : aexp -> aexp -> aexp.
Fixpoint aeval (a : aexp) (st : state) : nat :=
match a with
| AId i => st i
| ANum n => n
| APlus x y => aeval x st + aeval y st
| AMinus x y => aeval x st - aeval y st
| AMult x y => aeval x st * aeval y st
end.
(** Stack compiler **)
Require Import List.
Import ListNotations.
Inductive sinstr : Type :=
| SPush : nat -> sinstr
| SLoad : id -> sinstr
| SPlus : sinstr
| SMinus : sinstr
| SMult : sinstr.
Fixpoint s_execute (st : state) (stack : list nat) (prog : list sinstr)
: list nat :=
match prog with
| nil => stack
| cons x xs =>
let stack' := match x with
| SPush a => cons a stack
| SLoad v => cons (st v) stack
| SPlus => match stack with
| cons a (cons b rest) => cons (b + a) rest
| _ => [27]
end
| SMinus => match stack with
| cons a (cons b rest) => cons (b - a) rest
| _ => [27]
end
| SMult => match stack with
| cons a (cons b rest) => cons (b * a) rest
| _ => [27]
end
end
in
s_execute st stack' xs
end.
Fixpoint s_compile (e : aexp) : list sinstr :=
match e with
| AId i => [ SLoad i ]
| ANum n => [ SPush n ]
| APlus a b => (s_compile a) ++ (s_compile b) ++ [ SPlus ]
| AMinus a b => (s_compile a) ++ (s_compile b) ++ [ SMinus ]
| AMult a b => (s_compile a) ++ (s_compile b) ++ [ SMult ]
end.
Lemma s_execute_app : forall st stack a b,
s_execute st stack (a ++ b) = s_execute st (s_execute st stack a) b.
Proof.
intros.
generalize dependent stack.
induction a ; try reflexivity.
intros.
apply IHa. (***********************)
Qed.
答案 0 :(得分:4)
如果您在介绍后 s_execute st
match a with
| SPush a1 => a1 :: stack
| SLoad v => st v :: stack
| SPlus =>
match stack with
| [] => [27]
| [a1] => [27]
| a1 :: b0 :: rest => b0 + a1 :: rest
end
| SMinus =>
match stack with
| [] => [27]
| [a1] => [27]
| a1 :: b0 :: rest => b0 - a1 :: rest
end
| SMult =>
match stack with
| [] => [27]
| [a1] => [27]
| a1 :: b0 :: rest => b0 * a1 :: rest
end
end (a0 ++ b) =
s_execute st
(s_execute st
match a with
| SPush a1 => a1 :: stack
| SLoad v => st v :: stack
| SPlus =>
match stack with
| [] => [27]
| [a1] => [27]
| a1 :: b0 :: rest => b0 + a1 :: rest
end
| SMinus =>
match stack with
| [] => [27]
| [a1] => [27]
| a1 :: b0 :: rest => b0 - a1 :: rest
end
| SMult =>
match stack with
| [] => [27]
| [a1] => [27]
| a1 :: b0 :: rest => b0 * a1 :: rest
end
end a0) b
,您会看到假设和目标可以统一:
#!/usr/bin/env python
# save top 10 google image search results to current directory
# https://developers.google.com/custom-search/json-api/v1/using_rest
import requests
import os
import sys
import re
import shutil
url = 'https://www.googleapis.com/customsearch/v1?key={}&cx={}&searchType=image&q={}'
apiKey = os.environ['GOOGLE_IMAGE_APIKEY']
cx = os.environ['GOOGLE_CSE_ID']
q = sys.argv[1]
i = 1
for result in requests.get(url.format(apiKey, cx, q)).json()['items']:
link = result['link']
image = requests.get(link, stream=True)
if image.status_code == 200:
m = re.search(r'[^\.]+$', link)
filename = './{}-{}.{}'.format(q, i, m.group())
with open(filename, 'wb') as f:
image.raw.decode_content = True
shutil.copyfileobj(image.raw, f)
i += 1
答案 1 :(得分:1)
虽然您可能不想报告此特定问题,但感谢Arthur的分析,如果您想联系Coq开发人员,他们会在Coq-club和Coq-dev邮件列表上闲逛。见
https://coq.inria.fr/community
有关档案和更多信息。 还有一个可以使用的错误跟踪系统Coq-bugs。