这让我疯了。
我有这个:
<div class="container">
<div class="panel panel-primary">
<div class="panel-heading" id="panel-head">
<a data-toggle="collapse" data-target="#collapseDiv" class="white-link" id="toggle" >Records Added
<span class="indicator glyphicon glyphicon-chevron-down pull-left pad-right" id ="glyphicon"></span>
</a>
</div>
<div id="collapseDiv" class="panel-collapse collapse">
<div class="panel-body">
我正试图用这种方式解决崩溃问题(以各种方式):
$('#collapseDiv').collapse("toggle")
我得到的只是:
未捕获的TypeError:$(...)。collapse不是函数(...)
有什么想法吗?
```
```
答案 0 :(得分:16)
确保Jquery包含在Bootstrap之上,它可以正常工作
$('#collapseDiv').collapse("toggle");
.white-link{color:#fff;}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" rel="stylesheet" />
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script>
<div class="container">
<div class="panel panel-primary">
<div class="panel-heading" id="panel-head">
<a data-toggle="collapse" data-target="#collapseDiv" class="white-link" id="toggle">Records Added
<span class="indicator glyphicon glyphicon-chevron-down pull-left pad-right" id ="glyphicon"></span>
</a>
</div>
<div id="collapseDiv" class="panel-collapse collapse">
<div class="panel-body">
答案 1 :(得分:1)
我遇到了同样的问题....所以在JQuery中我做了类似的事情:
"""Example code for TensorFlow Wide & Deep Tutorial using tf.estimator API."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import shutil
from absl import app as absl_app
from absl import flags
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.utils.flags import core as flags_core
from official.utils.logs import hooks_helper
from official.utils.misc import model_helpers
_CSV_COLUMNS = [
'age', 'workclass', 'fnlwgt', 'education', 'education_num',
'marital_status', 'occupation', 'relationship', 'race', 'gender',
'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',
'income_bracket'
]
_CSV_COLUMN_DEFAULTS = [[0], [''], [0], [''], [0], [''], [''], [''], [''], [''],
[0], [0], [0], [''], ['']]
_NUM_EXAMPLES = {
'train': 32561,
'validation': 16281,
}
LOSS_PREFIX = {'wide': 'linear/', 'deep': 'dnn/'}
def define_wide_deep_flags():
"""Add supervised learning flags, as well as wide-deep model type."""
flags_core.define_base()
flags.adopt_module_key_flags(flags_core)
flags.DEFINE_enum(
name="model_type", short_name="mt", default="wide_deep",
enum_values=['wide', 'deep', 'wide_deep'],
help="Select model topology.")
flags_core.set_defaults(data_dir='/tmp/census_data',
model_dir='/tmp/census_model',
train_epochs=40,
epochs_between_evals=2,
batch_size=40)
def build_model_columns():
"""Builds a set of wide and deep feature columns."""
# Continuous columns
age = tf.feature_column.numeric_column('age')
education_num = tf.feature_column.numeric_column('education_num')
capital_gain = tf.feature_column.numeric_column('capital_gain')
capital_loss = tf.feature_column.numeric_column('capital_loss')
hours_per_week = tf.feature_column.numeric_column('hours_per_week')
education = tf.feature_column.categorical_column_with_vocabulary_list(
'education', [
'Bachelors', 'HS-grad', '11th', 'Masters', '9th', 'Some-college',
'Assoc-acdm', 'Assoc-voc', '7th-8th', 'Doctorate', 'Prof-school',
'5th-6th', '10th', '1st-4th', 'Preschool', '12th'])
marital_status = tf.feature_column.categorical_column_with_vocabulary_list(
'marital_status', [
'Married-civ-spouse', 'Divorced', 'Married-spouse-absent',
'Never-married', 'Separated', 'Married-AF-spouse', 'Widowed'])
relationship = tf.feature_column.categorical_column_with_vocabulary_list(
'relationship', [
'Husband', 'Not-in-family', 'Wife', 'Own-child', 'Unmarried',
'Other-relative'])
workclass = tf.feature_column.categorical_column_with_vocabulary_list(
'workclass', [
'Self-emp-not-inc', 'Private', 'State-gov', 'Federal-gov',
'Local-gov', '?', 'Self-emp-inc', 'Without-pay', 'Never-worked'])
# To show an example of hashing:
occupation = tf.feature_column.categorical_column_with_hash_bucket(
'occupation', hash_bucket_size=1000)
# Transformations.
age_buckets = tf.feature_column.bucketized_column(
age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])
# Wide columns and deep columns.
base_columns = [
education, marital_status, relationship, workclass, occupation,
age_buckets,
]
crossed_columns = [
tf.feature_column.crossed_column(
['education', 'occupation'], hash_bucket_size=1000),
tf.feature_column.crossed_column(
[age_buckets, 'education', 'occupation'], hash_bucket_size=1000),
]
wide_columns = base_columns + crossed_columns
deep_columns = [
age,
education_num,
capital_gain,
capital_loss,
hours_per_week,
tf.feature_column.indicator_column(workclass),
tf.feature_column.indicator_column(education),
tf.feature_column.indicator_column(marital_status),
tf.feature_column.indicator_column(relationship),
# To show an example of embedding
tf.feature_column.embedding_column(occupation, dimension=8),
]
return wide_columns, deep_columns
def build_estimator(model_dir, model_type):
"""Build an estimator appropriate for the given model type."""
wide_columns, deep_columns = build_model_columns()
hidden_units = [100, 75, 50, 25]
# Create a tf.estimator.RunConfig to ensure the model is run on CPU, which
# trains faster than GPU for this model.
run_config = tf.estimator.RunConfig().replace(
session_config=tf.ConfigProto(device_count={'GPU': 0}))
if model_type == 'wide':
return tf.estimator.LinearClassifier(
model_dir=model_dir,
feature_columns=wide_columns,
config=run_config)
elif model_type == 'deep':
return tf.estimator.DNNClassifier(
model_dir=model_dir,
feature_columns=deep_columns,
hidden_units=hidden_units,
config=run_config)
else:
return tf.estimator.DNNLinearCombinedClassifier(
model_dir=model_dir,
linear_feature_columns=wide_columns,
dnn_feature_columns=deep_columns,
dnn_hidden_units=hidden_units,
config=run_config)
def input_fn(data_file, num_epochs, shuffle, batch_size):
"""Generate an input function for the Estimator."""
assert tf.gfile.Exists(data_file), (
'%s not found. Please make sure you have run data_download.py and '
'set the --data_dir argument to the correct path.' % data_file)
def parse_csv(value):
print('Parsing', data_file)
columns = tf.decode_csv(value, record_defaults=_CSV_COLUMN_DEFAULTS)
features = dict(zip(_CSV_COLUMNS, columns))
labels = features.pop('income_bracket')
return features, tf.equal(labels, '>50K')
# Extract lines from input files using the Dataset API.
dataset = tf.data.TextLineDataset(data_file)
if shuffle:
dataset = dataset.shuffle(buffer_size=_NUM_EXAMPLES['train'])
dataset = dataset.map(parse_csv, num_parallel_calls=5)
# We call repeat after shuffling, rather than before, to prevent separate
# epochs from blending together.
dataset = dataset.repeat(num_epochs)
dataset = dataset.batch(batch_size)
return dataset
def export_model(model, model_type, export_dir):
"""Export to SavedModel format.
Args:
model: Estimator object
model_type: string indicating model type. "wide", "deep" or "wide_deep"
export_dir: directory to export the model.
"""
wide_columns, deep_columns = build_model_columns()
if model_type == 'wide':
columns = wide_columns
elif model_type == 'deep':
columns = deep_columns
else:
columns = wide_columns + deep_columns
feature_spec = tf.feature_column.make_parse_example_spec(columns)
example_input_fn = (
tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec))
model.export_savedmodel(export_dir, example_input_fn)
def run_wide_deep(flags_obj):
"""Run Wide-Deep training and eval loop.
Args:
flags_obj: An object containing parsed flag values.
"""
# Clean up the model directory if present
shutil.rmtree(flags_obj.model_dir, ignore_errors=True)
model = build_estimator(flags_obj.model_dir, flags_obj.model_type)
train_file = os.path.join(flags_obj.data_dir, 'adult.data')
test_file = os.path.join(flags_obj.data_dir, 'adult.test')
# Train and evaluate the model every `flags.epochs_between_evals` epochs.
def train_input_fn():
return input_fn(
train_file, flags_obj.epochs_between_evals, True, flags_obj.batch_size)
def eval_input_fn():
return input_fn(test_file, 1, False, flags_obj.batch_size)
loss_prefix = LOSS_PREFIX.get(flags_obj.model_type, '')
train_hooks = hooks_helper.get_train_hooks(
flags_obj.hooks, batch_size=flags_obj.batch_size,
tensors_to_log={'average_loss': loss_prefix + 'head/truediv',
'loss': loss_prefix + 'head/weighted_loss/Sum'})
# Train and evaluate the model every `flags.epochs_between_evals` epochs.
for n in range(flags_obj.train_epochs // flags_obj.epochs_between_evals):
model.train(input_fn=train_input_fn, hooks=train_hooks)
results = model.evaluate(input_fn=eval_input_fn)
# Display evaluation metrics
print('Results at epoch', (n + 1) * flags_obj.epochs_between_evals)
print('-' * 60)
for key in sorted(results):
print('%s: %s' % (key, results[key]))
if model_helpers.past_stop_threshold(
flags_obj.stop_threshold, results['accuracy']):
break
# Export the model
if flags_obj.export_dir is not None:
export_model(model, flags_obj.model_type, flags_obj.export_dir)
def main(_):
run_wide_deep(flags.FLAGS)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
define_wide_deep_flags()
absl_app.run(main)
如official doc中所述......
这就是我删除&#39; show&#39;类它对我有用...唯一的缺点就是它立即隐藏(没有任何动画)
答案 2 :(得分:1)
jquery 3.5.0在使用bootstrap 4的折叠功能而不是jquery 3.4.1版本时给出了错误。就我而言,它正常工作。
答案 3 :(得分:0)
<link href="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" rel="stylesheet"/>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.0/jquery.min.js"></script>
<script src="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script>
<div class="container">
<div class="panel panel-primary">
<div class="panel-heading" id="panel-head"> <a data-toggle="collapse" href="#collapseDiv" class="white-link" id="toggle" >Records Added <span class="indicator glyphicon glyphicon-chevron-down pull-left pad-right" id ="glyphicon"></span> </a> </div>
<div id="collapseDiv" class="panel-collapse collapse">
<div class="panel-body">rywrujtwyjdtyjdsyjktyj</div>
</div>
</div>
</div>
请检查一下。您的bootstrap.min.js / bootstrap.js是在您的jquery库声明之后声明的。
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.0/jquery.min.js"></script>
<script src="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script>
答案 4 :(得分:0)
如果使用的话,我的Lightbox也有类似的问题(由Lokesh Dhakar设计):
<script src="js/lightbox-plus-jquery.min.js"></script>
但使用过:
<script src="js/lightbox.min.js"></script>
答案 5 :(得分:0)
我花了一个小时才弄清楚。
这是简单的解决方案。我会用三种不同的方法来解释
1.替换
'com.unity3d.player'
与
import * as $ from 'jquery';
如果没有解决您的问题,那么
2.确保您按如下所示在index.html中导入jquery和bootstrap,jQuery应该是第
declare var $ : any;
如果它不起作用
3.比安装jquery,jquery ui,jquery操作和引导
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/bootstrap.min.js" integrity="sha384-JZR6Spejh4U02d8jOt6vLEHfe/JQGiRRSQQxSfFWpi1MquVdAyjUar5+76PVCmYl" crossorigin="anonymous"></script>
现在导入您的ts或js文件
npm install jquery --save
npm install @types/jquery --save
npm install bootstrap --save
更新angular.json文件
import * as $ from 'jquery';
现在所有这些都应该起作用,谢谢
答案 6 :(得分:-1)
试试这个
$('.panel-collapse').collapse({
toggle: false
});