Python字典:大小影响时间?

时间:2016-02-24 01:34:10

标签: python performance dictionary

让'假设字典A中有一个键,而字典B中有10亿个键

在算法上,查找操作是O(1)

但是,根据字典大小查找不同的实际时间(程序执行时间)?

onekey_stime = time.time()
print one_key_dict.get('firstkey')
onekey_dur = time.time() - onekey_stime

manykeys_stime = time.time()
print manykeys_dict.get('randomkey')
manykeys_dur = time.time() - manykey_stime

我会看到onekey_durmanykeys_dur之间的时差吗?

1 个答案:

答案 0 :(得分:3)

在一个小型和大型字典的测试中非常相同:

In [31]: random_key = lambda: ''.join(np.random.choice(list(string.ascii_letters), 20))

In [32]: few_keys = {random_key(): np.random.random() for _ in xrange(100)}

In [33]: many_keys = {random_key(): np.random.random() for _ in xrange(1000000)}

In [34]: few_lookups = np.random.choice(few_keys.keys(), 50)

In [35]: many_lookups = np.random.choice(many_keys.keys(), 50)

In [36]: %timeit [few_keys[k] for k in few_lookups]
100000 loops, best of 3: 6.25 µs per loop

In [37]: %timeit [many_keys[k] for k in many_lookups]
100000 loops, best of 3: 7.01 µs per loop

编辑:对你来说,@ ShadowRanger - 错过的查找也非常接近:

In [38]: %timeit [few_keys.get(k) for k in many_lookups]
100000 loops, best of 3: 7.99 µs per loop

In [39]: %timeit [many_keys.get(k) for k in few_lookups]
100000 loops, best of 3: 8.78 µs per loop