我想对其字母进行分割。举个例子如下:
给出的二进制文件采用csv格式:
A=1000, C=0100, G=0010, T=0001
binary.csv:CAT,GAA
0,1,0,0,1,0,0,0,0,0,0,1
0,0,1,0,1,0,0,0,1,0,0,0
binary.csv需要与csv文件中的单行值相乘。
single.csv:
0.28,0.22,0.23,0.27,0.12,0.29,0.34,0.21,0.44,0.56,0.51,0.65
下面的代码对文件和输出中的值进行乘法运算:
0.22,0.12,0.65
0.23,0.12,0.44
代码
import csv
with open('single.csv', 'rb') as csvfile:
for row in csv.reader(csvfile, delimiter=','):
reals = row
with open('binary.csv', 'rb') as csvfile:
pwreader = csv.reader(csvfile, delimiter=',')
with open('output.csv','wb') as testfile:
csv_writer=csv.writer(testfile)
for row in pwreader:
result = []
for i,b in enumerate(row):
if b == '1' :
result.append(reals[i])
csv_writer.writerow(result)
我有额外的csv文件,我想先前执行除法 输出和相对于其字母表划分的值:
A C G T
0.4,0.5,0.7,0.1
0.2,0.8,0.9,0.3
CAT的值除以0.5,0.4,0.1,GAA除以0.9,0.2,0.2,这样我就可以得到一个全新的输出如下:
0.44,0.3,6.5
0.26,0.6,2.2
在数组上使用numpy可能会解决这个问题,但是当使用超过几千个数据时,它可能不合适。当我尝试使用60,000 ++数据时发生内存不足。
任何人都可以帮助我吗?
答案 0 :(得分:2)
import numpy as np
让我们假设您可以从文件中提取这些内容:
actg = np.array([
[0,1,0,0,1,0,0,0,0,0,0,1],
[0,0,1,0,1,0,0,0,1,0,0,0]
])
single = np.array([0.28,0.22,0.23,0.27,0.12,0.29,0.34,0.21,0.44,0.56,0.51,0.65])
division = np.array([
[0.4,0.5,0.7,0.1],
[0.2,0.8,0.9,0.3]
])
首先,让actg
变为更有用的格式:
>>> actg = actg.reshape((-1, 3, 4))
array([[[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 1]],
[[0, 0, 1, 0],
[1, 0, 0, 0],
[1, 0, 0, 0]]])
我们对单身做同样的事情:
>>> single = single.reshape((-1, 4))
array([[ 0.28, 0.22, 0.23, 0.27],
[ 0.12, 0.29, 0.34, 0.21],
[ 0.44, 0.56, 0.51, 0.65]])
所以现在我们的对象被索引为:
actg[row, col, symbol]
single[col, symbol]
division[row, symbol]
此时,我们只是乘以和和
>>> res_1 = (single * actg).sum(axis=-1)
array([[ 0.22, 0.12, 0.65],
[ 0.23, 0.12, 0.44]])
对于除法,我们需要使用col
np.newaxis
>>> divide_by = (division[:,np.newaxis,:] * actg).sum(axis=-1)
array([[ 0.5, 0.4, 0.1],
[ 0.9, 0.2, 0.2]])
最后,我们只是进行分工
>>> res2 = res_1 / divide_by
array([[ 0.44 , 0.3 , 6.5 ],
[ 0.25555556, 0.6 , 2.2 ]])
奖励一个班轮:
res2 = (single[np.newaxis,:,:] / division[:,np.newaxis,:] * actg).sum(axis=-1)