PIpelineDB使用mysql外部数据包装器连续查看

时间:2016-02-22 20:44:17

标签: mysql postgresql join postgres-fdw pipelinedb

当我在外表上完成流连接时,当我将连续视图连接到外表时,我得到的结果不同。我期望相同的两个查询看起来是不同的。我的本地管道实例和fdw中的表之间的延迟是否会对我的连续流连接产生影响?我试图在外国表格上聚合rx_bytes和tx_bytes baesd。

我正在使用最新的

中的mysql_fdw

https://github.com/EnterpriseDB/mysql_fdw

  1. 创建外表

    CREATE EXTENSION mysql_fdw;
    
    CREATE SERVER local_mysql
        FOREIGN DATA WRAPPER mysql_fdw
        OPTIONS (host 'localhost', port '3306', secure_auth 'true');
    
    CREATE USER MAPPING FOR pipeline
        SERVER local_mysql 
        OPTIONS(username 'username', password 'password');
    
    CREATE FOREIGN TABLE "foo_instance" (
         "id" bigint,
         "foo_id" bigint,
    )
    SERVERlocal_mysql
    OPTIONS(dbname 'schema', table_name 'foo_instance');
    
  2. 在10次插入后,我希望这两个查询产生相同的结果:

  3. A)

        CREATE CONTINUOUS VIEW total_bytes
        AS SELECT date_trunc('minute', time_stamp::timestamp) AS minute,
            id::integer,
            sum(tx_bytes::bigint) AS tx_bytes,
            sum(rx_bytes::bigint) AS rx_bytes
         FROM byte_count_stream GROUP BY minute, id;
    
        SELECT minute, sum(tx_bytes) AS tx_bytes, sum(rx_bytes) AS rx_bytes, foo_id 
        FROM total_bytes JOIN foo_instance 
             ON total_bytes.id=foo_instance.id GROUP BY minute, foo_instance.foo_id;
    
               minute        | tx_bytes | rx_bytes | foo_id 
        ---------------------+----------+----------+---------
         2016-02-22 09:04:00 |      450 |      513 |    7939
         2016-02-22 09:04:00 |     2762 |     2210 |    7940
         2016-02-22 09:04:00 |      143 |      332 |    7941
         2016-02-22 09:04:00 |      371 |     1042 |    7942
         2016-02-22 09:04:00 |      865 |      987 |    7943
         (5 rows)
    

    b)中

        CREATE CONTINUOUS VIEW joined_foo_total_bytes
            AS SELECT date_trunc('minute', byte_count_stream.time_stamp::timestamp) AS minute,
                sum(byte_count_stream.tx_bytes::bigint) AS tx_bytes,
                sum(byte_count_stream.rx_bytes::bigint) AS rx_bytes,
                foo_instance.foo_id
            FROM byte_count_stream JOIN foo_instance ON byte_count_stream.id::integer = foo_instance.id
            GROUP BY minute, foo_instance.foo_id;
    
    
    
        pipeline=# select * from joined_user_total_bytes;       
               minute        | tx_bytes | rx_bytes | foo_id 
        ---------------------+----------+----------+---------
         2016-02-22 09:04:00 |      371 |     1042 |    7942
         2016-02-22 09:04:00 |      143 |      332 |    7941
         2016-02-22 09:04:00 |      865 |      987 |    7943
         2016-02-22 09:04:00 |     2762 |     2210 |    7940
         (4 rows)
    

    显然结果并不相同。我可以从连续视图到外表进行连接,但更喜欢使用流连接。

0 个答案:

没有答案