我希望可视化以下数据:酒店观察到每年的部分客户都是回头客。因此,每年约有一半的客户是拳头客户,20%是第二次客户,依此类推。下面是一些包含数据和可视化的R代码。但是,我对此并不满意,而且我正在寻求改进:
访问次数被视为一个因素 - 这是正确的方法吗?
堆叠栏可以轻松比较第一次来宾,而不是其他客人。我应该选择不同的可视化吗?
#! /usr/bin/env R CMD BATCH
library(ggplot2)
d <- read.table(header=TRUE, text='
year visit count
2013 1 1641
2013 2 604
2013 3 256
2013 4 89
2013 5 32
2013 6 10
2013 7 4
2013 8 3
2014 1 1365
2014 2 637
2014 3 276
2014 4 154
2014 5 86
2014 6 39
2014 7 19
2014 8 6
2014 9 4
2014 10 2
2014 11 1
2014 12 1
2015 1 1251
2015 2 608
2015 3 288
2015 4 143
2015 5 88
2015 6 52
2015 7 21
2015 8 8
2015 9 8
2015 10 3
2015 11 2
2015 12 1')
d$year <- factor(d$year)
d$visit <- factor(d$visit)
p <- ggplot(d, aes(year,count))
p <- p + geom_bar(aes(fill=visit),position="fill",stat="identity")
p <- p + xlab("Year") + ylab("Distribution")
# pdf("returners.pdf",9,6)
print(p)
# dev.off()
答案 0 :(得分:3)
为什么不将它们视为实际分布?
p <- ggplot(d, aes(visit, count))
p <- p + geom_bar(stat="identity", width=0.75)
p <- p + scale_x_discrete(expand=c(0,0))
p <- p + scale_y_continuous(expand=c(0,0))
p <- p + facet_wrap(~year)
p <- p + labs(x=NULL, y="Visits")
p <- p + ggthemes::theme_tufte(base_family="Helvetica")
p <- p + theme(legend.position="none")
p <- p + theme(panel.grid=element_line(color="#2b2b2b", size=0.15))
p <- p + theme(panel.grid.minor=element_blank())
p <- p + theme(panel.grid.major.x=element_blank())
p <- p + theme(axis.ticks=element_blank())
p <- p + theme(strip.text=element_text(hjust=0))
p <- p + theme(panel.margin.x=unit(1, "cm"))
p
要按年份查看访问次数增量,您只需交换构面:
d$year <- factor(d$year)
d$visit <- sprintf("Visit: %d", d$visit)
d$visit <- factor(d$visit, levels=unique(d$visit))
p <- ggplot(d, aes(year, count))
p <- p + geom_segment(aes(xend=year, yend=0), size=0.3)
p <- p + geom_point()
p <- p + scale_x_discrete(expand=c(0, 0.25))
p <- p + scale_y_continuous(label=scales::comma)
p <- p + facet_wrap(~visit, scales="free_y")
p <- p + labs(x="NOTE: Free y-axis scale", y="Count")
p <- p + ggthemes::theme_tufte(base_family="Helvetica")
p <- p + theme(legend.position="none")
p <- p + theme(panel.grid=element_line(color="#2b2b2b", size=0.15))
p <- p + theme(panel.grid.minor=element_blank())
p <- p + theme(panel.grid.major.x=element_blank())
p <- p + theme(axis.ticks=element_blank())
p <- p + theme(strip.text=element_text(hjust=0))
p <- p + theme(panel.margin=unit(1.5, "cm"))
p
或者,您可以通过访问(%)来查看同比增长:
library(dplyr)
group_by(d, visit) %>%
arrange(year) %>%
mutate(lag=lag(count),
chg_pct=(count-lag)/lag,
chg_pct=ifelse(is.na(chg_pct), 0, chg_pct),
pos=as.character(sign(chg_pct))) -> d
p <- ggplot(d, aes(year, chg_pct))
p <- p + geom_hline(yintercept=0, color="#2b2b2b", size=0.5)
p <- p + geom_segment(aes(xend=year, yend=0, color=pos), size=0.3)
p <- p + geom_point(aes(color=pos))
p <- p + scale_x_discrete(expand=c(0, 0.25))
p <- p + scale_y_continuous(label=scales::percent)
p <- p + scale_color_manual(values=c("#b2182b", "#878787", "#7fbc41"))
p <- p + facet_wrap(~visit, scales="free_y")
p <- p + labs(x="NOTE: free y-axis", y="YoY % Difference per visit count")
p <- p + ggthemes::theme_tufte(base_family="Helvetica")
p <- p + theme(legend.position="none")
p <- p + theme(panel.grid=element_line(color="#2b2b2b", size=0.15))
p <- p + theme(panel.grid.minor=element_blank())
p <- p + theme(panel.grid.major.x=element_blank())
p <- p + theme(axis.ticks=element_blank())
p <- p + theme(strip.text=element_text(hjust=0))
p <- p + theme(panel.margin=unit(1.5, "cm"))
p <- p + theme(legend.position="none")
p
答案 1 :(得分:1)
您似乎正在尝试按先前访问次数比较对酒店总访问次数的贡献,并进行逐年比较。以下代码将它们放在一个图表中。
d$year <- factor(d$year)
# d$visit <- factor(d$visit)
d <- transform(d[order(d$year, d$visit),], cum_count=ave(count, year, FUN=cumsum))
x_max <- max(d$visit)
y_max <- max(d$cum_count)
color_sch <- c("red","tan","blue")
p <- ggplot(data=d, aes(x=visit, colour=year))
p <- p + geom_bar(aes(y= count, fill=year), position="dodge",stat="identity", width=.7)
p <- p + geom_line(aes(y = cum_count), linetype="dotted", size=1)
p <- p + geom_point(aes(y = cum_count), size=4)
p <- p + scale_y_continuous(breaks = seq(0,y_max, 250))
p <- p + scale_x_continuous(breaks=1:x_max)
p <- p + scale_colour_manual(values=color_sch)
p <- p + scale_fill_manual(values=color_sch)
p <- p + xlab("Visit") + ylab("Count and \nCummulative Count")
p <- p + geom_text(aes(x = 2, y = count[2], label = "Count by Number of Visits"), hjust=-.5, vjust=-2.0, size=6, color="Black")
p <- p + geom_text(aes(x = x_max-5, y = tail(cum_count,1), label = "Cummulative Count"), hjust=0, vjust=2.0, size=6, color="Black")
# pdf("returners.pdf",9,6)
print(p)
# dev.off()
给出了图表
这种表述表明2015年与前几年相比下降的原因是首次购买的客户较少,而返还的次数减少了。