所以我正在编写一个比较Bubble,Selection,Merge和Quick Sort的程序。所有4个方法都给出了一个1000个元素的随机数组,我计算一下方法执行完全排序数组需要多少次。我的问题围绕着我的计数。我知道我应该看看每个人的Big O复杂性,以便对数字进行估算,但我只想问我是否把计数放在正确的位置。
冒泡排序:
public static int[] bubbleSort(int[] a)
{
boolean done = false;
int n = a.length;
while(done == false)//runs n times
{
done = true;
for(int i = 0; i < n-1; i++)//runs n times
{
if(a[i] > a[i+1])//Swap
{
bubbleCount++;
int temp = a[i];
a[i] = a[i+1];
a[i+1] = temp;
done = false;
}
}
}
return a;
}
选择排序:
public static void selectionSort(int[] a )
{
for (int i = 0; i < a.length - 1; i++)
{
int pos = i;
for (int j = i + 1; j < a.length; j++)
{
// increments selection count
selectionCount++;
// if a[j] is less than a[pos], set pos to j
if (a[j] < a[pos])
{
pos = j;
}
}
// swaps a[i] and a[pos]
int temp = a[i];
a[i] = a[pos];
a[pos] = temp;
}
}
合并排序:
public static void mergeSort(int [] a)
{
//put counter for checks inside method
int size = a.length;
if(size < 2)//Halt recursion
{
return;
}
int mid = size/ 2;
int leftSize = mid;
int rightSize = size - mid;
int[] left = new int[leftSize];
int[] right = new int[rightSize];
//populate left
for(int i = 0; i < mid; i++)
{
mergeCount++;
left[i] = a[i];
}
//populate right
for(int i = mid; i < size; i++)
{
mergeCount++;
right[i-mid] = a[i];
}
mergeSort(left);
mergeSort(right);
//merge
merge(left, right, a);
}
public static void merge(int[] left, int[] right, int[] a)
{
int leftSize = left.length;
int rightSize = right.length;
int i = 0;//index for left
int j = 0;//index for right
int k = 0;//index for a
while(i < leftSize && j < rightSize)//compares until the end is reach in either
{
if(left[i] <= right[j])
{
//assigns a[k] to left[i] and increments both i and k
a[k] = left[i];
i++;
k++;
}
else
{
//assigns a[k] to right [j] and increments j and k
a[k] = right[j];
j++;
k++;
}
}
//fills in the rest
while(i<leftSize)
{
a[k] = left[i];
i++;
k++;
}
while(j<rightSize)
{
a[k] = right[j];
j++;
k++;
}
}
快速排序
public static void quickSort(int[] a, int left, int right)
{
int index = partition(a, left, right);
if(left < index - 1)
{
//increments quickCount and calls quickSort recursively
quickCount++;
quickSort(a, left, index-1);
}
if(index < right)
{
//increments quickCount and calls quicSort recursively
quickCount++;
quickSort(a, index, right);
}
}
public static int partition(int[] a, int left, int right)
{
int i = left;
int j = right;
int pivot = a[((left+right)/2)];
while(i<=j)
{
while(a[i] < pivot)
{
i++;//correct position so move forward
}
while(a[j] > pivot)
{
j--;//correct position
}
if(i <= j)
{
//swaps and increments i and decrements j
int temp = a[i];
a[i] = a[j];
a[j] = temp;
i++;
j--;
}
}
return i;
}
答案 0 :(得分:0)
您的计数应该是您对两个值进行比较的地方。
bubbleCount应该向上移动到if之上,因为你想要计算每个比较,不确定if子句为真的那些。 selectionCount似乎没问题。 mergeCount应该移动到比较值的位置。
答案 1 :(得分:0)
你需要计算比较,所以我会创建一个比较和计数的方法:
while(i<=j)
并始终使用该方法来比较值:
而不是:
while(!isGreaterThan(i, j))
做的:
data.table
等