甘特图与R

时间:2010-08-23 18:06:03

标签: r charts gantt-chart

是否有人使用R创建Gantt chart? 我所知道的唯一解决方案是this,但我正在寻找更复杂的解决方案(如果可能的话)(或多或少看起来像thisthis)。

P.S。我可以没有依赖箭头。

14 个答案:

答案 0 :(得分:81)

现在有一些优雅的方法可以在R中生成甘特图。

使用Candela

library(candela)

data <- list(
    list(name='Do this', level=1, start=0, end=5),
    list(name='This part 1', level=2, start=0, end=3),
    list(name='This part 2', level=2, start=3, end=5),
    list(name='Then that', level=1, start=5, end=15),
    list(name='That part 1', level=2, start=5, end=10),
    list(name='That part 2', level=2, start=10, end=15))

candela('GanttChart',
    data=data, label='name',
    start='start', end='end', level='level',
    width=700, height=200)

enter image description here

使用DiagrammeR

library(DiagrammeR)

mermaid("
gantt
dateFormat  YYYY-MM-DD
title A Very Nice Gantt Diagram

section Basic Tasks
This is completed             :done,          first_1,    2014-01-06, 2014-01-08
This is active                :active,        first_2,    2014-01-09, 3d
Do this later                 :               first_3,    after first_2, 5d
Do this after that            :               first_4,    after first_3, 5d

section Important Things
Completed, critical task      :crit, done,    import_1,   2014-01-06,24h
Also done, also critical      :crit, done,    import_2,   after import_1, 2d
Doing this important task now :crit, active,  import_3,   after import_2, 3d
Next critical task            :crit,          import_4,   after import_3, 5d

section The Extras
First extras                  :active,        extras_1,   after import_4,  3d
Second helping                :               extras_2,   after extras_1, 20h
More of the extras            :               extras_3,   after extras_1, 48h
")

enter image description here

DiagrammeR GitHub

上查找此示例以及更多示例

如果您的数据存储在data.frame中,则可以通过将其转换为正确的格式来创建要传递给mermaid()的字符串。

请考虑以下事项:

df <- data.frame(task = c("task1", "task2", "task3"),
                 status = c("done", "active", "crit"),
                 pos = c("first_1", "first_2", "first_3"),
                 start = c("2014-01-06", "2014-01-09", "after first_2"),
                 end = c("2014-01-08", "3d", "5d"))

#   task status     pos         start        end
#1 task1   done first_1    2014-01-06 2014-01-08
#2 task2 active first_2    2014-01-09         3d
#3 task3   crit first_3 after first_2         5d

使用dplyrtidyr(或您喜欢的任何数据争夺资源):

library(tidyr)
library(dplyr)

mermaid(
  paste0(
    # mermaid "header", each component separated with "\n" (line break)
    "gantt", "\n", 
    "dateFormat  YYYY-MM-DD", "\n", 
    "title A Very Nice Gantt Diagram", "\n",
    # unite the first two columns (task & status) and separate them with ":"
    # then, unite the other columns and separate them with ","
    # this will create the required mermaid "body"
    paste(df %>%
            unite(i, task, status, sep = ":") %>%
            unite(j, i, pos, start, end, sep = ",") %>%
            .$j, 
          collapse = "\n"
    ), "\n"
  )
)

正如@GeorgeDontas在评论中所提到的,有一个little hack可以允许将x轴的标签更改为日期而不是'w.01,w.02'。

假设您在m中保存了上述美人鱼图表,请执行:

m$x$config = list(ganttConfig = list(
  axisFormatter = list(list(
    "%b %d, %Y" 
    ,htmlwidgets::JS(
      'function(d){ return d.getDay() == 1 }' 
    )
  ))
))

给出了:

enter image description here

使用timevis

来自timevis GitHub

  

timevis可让您创建丰富的完全交互式时间轴   R.时间轴中的可视化可以包含在Shiny apps和R中   降价文档,或从R控制台和RStudio Viewer查看。

library(timevis)

data <- data.frame(
  id      = 1:4,
  content = c("Item one"  , "Item two"  ,"Ranged item", "Item four"),
  start   = c("2016-01-10", "2016-01-11", "2016-01-20", "2016-02-14 15:00:00"),
  end     = c(NA          ,           NA, "2016-02-04", NA)
)

timevis(data)

给出了:

enter image description here

使用情节

我偶然发现post使用plotly提供了另一种方法。这是一个例子:

library(plotly)

df <- read.csv("https://cdn.rawgit.com/plotly/datasets/master/GanttChart-updated.csv", 
               stringsAsFactors = F)

df$Start  <- as.Date(df$Start, format = "%m/%d/%Y")
client    <- "Sample Client"
cols      <- RColorBrewer::brewer.pal(length(unique(df$Resource)), name = "Set3")
df$color  <- factor(df$Resource, labels = cols)

p <- plot_ly()
for(i in 1:(nrow(df) - 1)){
  p <- add_trace(p,
                 x = c(df$Start[i], df$Start[i] + df$Duration[i]), 
                 y = c(i, i), 
                 mode = "lines",
                 line = list(color = df$color[i], width = 20),
                 showlegend = F,
                 hoverinfo = "text",
                 text = paste("Task: ", df$Task[i], "<br>",
                              "Duration: ", df$Duration[i], "days<br>",
                              "Resource: ", df$Resource[i]),
                 evaluate = T
  )
}

p

给出了:

enter image description here

然后,您可以添加其他信息和注释,自定义字体和颜色等。(有关详细信息,请参阅博客文章)

答案 1 :(得分:27)

一个简单的ggplot2甘特图。

首先,我们创建一些数据。

library(reshape2)
library(ggplot2)

tasks <- c("Review literature", "Mung data", "Stats analysis", "Write Report")
dfr <- data.frame(
  name        = factor(tasks, levels = tasks),
  start.date  = as.Date(c("2010-08-24", "2010-10-01", "2010-11-01", "2011-02-14")),
  end.date    = as.Date(c("2010-10-31", "2010-12-14", "2011-02-28", "2011-04-30")),
  is.critical = c(TRUE, FALSE, FALSE, TRUE)
)
mdfr <- melt(dfr, measure.vars = c("start.date", "end.date"))

现在画出情节。

ggplot(mdfr, aes(value, name, colour = is.critical)) + 
  geom_line(size = 6) +
  xlab(NULL) + 
  ylab(NULL)

答案 2 :(得分:8)

考虑使用package projmanr(2017年8月23日在CRAN上发布的0.1.0版本)。

library(projmanr)

# Use raw example data
(data <- taskdata1)

taskdata1

  id name duration pred
1  1   T1        3     
2  2   T2        4    1
3  3   T3        2    1
4  4   T4        5    2
5  5   T5        1    3
6  6   T6        2    3
7  7   T7        4 4,5 
8  8   T8        3  6,7

现在开始准备甘特:

# Create a gantt chart using the raw data
gantt(data)

enter image description here

# Create a second gantt chart using the processed data
res <- critical_path(data)
gantt(res)

enter image description here

# Use raw example data
data <- taskdata1
# Create a network diagram chart using the raw data
network_diagram(data)

enter image description here

# Create a second network diagram using the processed data
res <- critical_path(data)
network_diagram(res)

enter image description here

答案 3 :(得分:7)

试试这个:

install.packages("plotrix")
library(plotrix)
?gantt.chart

答案 4 :(得分:7)

plan支持创建燃尽图和甘特图         图表并包含plot.gantt函数。见this R Graphical Manual page

另请参阅如何使用Plotly的R API GANTT CHARTS IN R USING PLOTLY在R中创建一个。

答案 5 :(得分:5)

您可以使用GoogleVis package

执行此操作
datTL <- data.frame(Position=c(rep("President", 3), rep("Vice", 3)),
                    Name=c("Washington", "Adams", "Jefferson",
                           "Adams", "Jefferson", "Burr"),
                    start=as.Date(x=rep(c("1789-03-29", "1797-02-03", 
                                          "1801-02-03"),2)),
                    end=as.Date(x=rep(c("1797-02-03", "1801-02-03", 
                                        "1809-02-03"),2)))

Timeline <- gvisTimeline(data=datTL, 
                         rowlabel="Name",
                         barlabel="Position",
                         start="start", 
                         end="end",
                         options=list(timeline="{groupByRowLabel:false}",
                                      backgroundColor='#ffd', 
                                      height=350,
                                      colors="['#cbb69d', '#603913', '#c69c6e']"))
plot(Timeline)

enter image description here

来源:https://cran.r-project.org/web/packages/googleVis/vignettes/googleVis_examples.html

答案 6 :(得分:4)

Here's a post我写过使用ggplot生成类似甘特图的东西。不是很复杂,但可能会给你一些想法。

答案 7 :(得分:4)

我使用并修改了里奇的上述例子,就像一个魅力。修改后的版本,以显示他的模型如何转换为摄取CSV数据而不是手动提供的文本项。

注意:Richie的答案缺少表明上述/下方代码需要2个软件包(重塑 ggplot2 )。

rawschedule <- read.csv("sample.csv", header = TRUE) #modify the "sample.csv" to be the name of your file target. - Make sure you have headers of: Task, Start, Finish, Critical OR modify the below to reflect column count.
tasks <- c(t(rawschedule["Task"]))
dfr <- data.frame(
name        = factor(tasks, levels = tasks),
start.date  = c(rawschedule["Start"]),
end.date    = c(rawschedule["Finish"]),
is.critical = c(rawschedule["Critical"]))
mdfr <- melt(dfr, measure.vars = c("Start", "Finish"))


#generates the plot
ggplot(mdfr, aes(as.Date(value, "%m/%d/%Y"), name, colour = Critical)) + 
geom_line(size = 6) +
xlab("Duration") + ylab("Tasks") +
theme_bw()

答案 8 :(得分:4)

我知道这是一个非常老的问题,但也许值得在这里留下来-对我对这个问题的答案不满意-几个月前,我制作了一个用于制作基于ggplot2的甘特图的基本软件包:ganttrify(有关详细信息,请参见包装的自述文件。

示例输出: enter image description here

答案 9 :(得分:2)

对我来说,Gvistimeline是最好的工具,但它所需的在线连接对我没用。因此我创建了一个名为vistime的包,它使用plotly(类似于@StevenBeaupré的答案),所以你可以放大等等。

https://github.com/shosaco/vistime

  

vistime:使用plotly.js创建交互式时间轴或甘特图。该   图表可以包含在Shiny应用程序中并通过操作进行操作   plotly_build()。

install.packages("vistime")    
dat <- data.frame(Position=c(rep("President", 3), rep("Vice", 3)),
              Name = c("Washington", "Adams", "Jefferson", "Adams", "Jefferson", "Burr"),
              start = rep(c("1789-03-29", "1797-02-03", "1801-02-03"), 2),
              end = rep(c("1797-02-03", "1801-02-03", "1809-02-03"), 2),
              color = c('#cbb69d', '#603913', '#c69c6e'),
              fontcolor = rep("white", 3))

vistime(dat, events="Position", groups="Name", title="Presidents of the USA")

enter image description here

答案 10 :(得分:1)

图书馆PlotPrjNetworks为项目管理提供了有用的网络工具。

library(PlotPrjNetworks)
project1=data.frame(
task=c("Market Research","Concept Development","Viability Test",
"Preliminary Design","Process Design","Prototyping","Market Testing","Final Design",
"Launching"),
start=c("2015-07-05","2015-07-05","2015-08-05","2015-10-05","2015-10-05","2016-02-18",
"2016-03-18","2016-05-18","2016-07-18"),
end=c("2015-08-05","2015-08-05","2015-10-05","2016-01-05","2016-02-18","2016-03-18",
"2016-05-18","2016-07-18","2016-09-18"))
project2=data.frame(
from=c(1,2,3,4,5,6,7,8),
to=c(2,3,4,5,6,7,8,9),
type=c("SS","FS","FS","SS","FS","FS","FS","FS"),
delay=c(7,7,7,8,10,10,10,10))
GanttChart(project1,project2)

enter image description here

答案 11 :(得分:1)

我想用每个任务的几个小节改进ggplot-Answer。

首先生成一些数据(dfrP是另一个答案的data.frame,dfrR是其他一些data.frame,具有实现日期,而mdfr是合并到以下ggplot() - 语句):

library(reshape2)
tasks <- c("Review literature", "Mung data", "Stats analysis", "Write Report")
dfrP <- data.frame(
  name        = factor(tasks, levels = tasks),
  start.date  = as.Date(c("2010-08-24", "2010-10-01", "2010-11-01", "2011-02-14")),
  end.date    = as.Date(c("2010-10-31", "2010-12-14", "2011-02-28", "2011-04-30")),
  is.critical = c(TRUE, FALSE, FALSE, TRUE)
)
dfrR <- data.frame(
  name        = factor(tasks, levels = tasks),
  start.date  = as.Date(c("2010-08-22", "2010-10-10", "2010-11-01", NA)),
  end.date    = as.Date(c("2010-11-03", "2010-12-22", "2011-02-24", NA)),
  is.critical = c(TRUE, FALSE, FALSE,TRUE)
)
mdfr <- merge(data.frame(type="Plan", melt(dfrP, measure.vars = c("start.date", "end.date"))),
  data.frame(type="Real", melt(dfrR, measure.vars = c("start.date", "end.date"))), all=T)

现在使用facets为任务名称绘制此数据:

library(ggplot2)
ggplot(mdfr, aes(x=value, y=type, color=is.critical))+
  geom_line(size=6)+
  facet_grid(name ~ .) +
  scale_y_discrete(limits=c("Real", "Plan")) +
  xlab(NULL) + ylab(NULL)

如果没有is.critical信息,您也可以使用Plan / Real作为颜色(我会优先考虑),但我想使用其他答案的data.frame来使其更具可比性。

答案 12 :(得分:1)

答案 13 :(得分:0)

在ggplot中发现geom_segment很棒。从以前的解决方案中可以使用数据,但无需融合。

library(ggplot2)

tasks <- c("Review literature", "Mung data", "Stats analysis", "Write Report")
dfr <- data.frame(
  name        = factor(tasks, levels = tasks),
  start.date  = as.Date(c("2010-08-24", "2010-10-01", "2010-11-01", "2011-02-14")),
  end.date    = as.Date(c("2010-10-31", "2010-12-14", "2011-02-28", "2011-04-30")),
  is.critical = c(TRUE, FALSE, FALSE, TRUE)
)

ggplot(dfr, aes(x =start.date, xend= end.date, y=name, yend = name, color=is.critical)) +
  geom_segment(size = 6) +
  xlab(NULL) + ylab(NULL)

GantPlot