我有一个看起来如下的数据集(但实际的数据集要大得多,并且包含一些额外的列):
"month","year","id","hour","count"
1,2015,"place001",13,10.2319100637371
6,2015,"place001",14,42.2066290129154
10,2015,"place002",18,34.5326964651126
3,2015,"place002",8,23.0217976434084
3,2014,"place002",1,19.184831369507
3,2014,"place003",15,47.322584044784
我正在尝试构建一个Shiny应用来探索这些数据。这是我到目前为止所得到的,但它在尝试处理quarterly
反应函数时会中断。如果我使用已注释掉的“冗余”方法,应用程序会正确呈现,但我想避免使用它。
稍后我还需要使用totals
的输出并使用melt
函数对其进行重新整形,因此我想了解如何将此反应函数用作另一个反应函数的输入。< / p>
非常感谢任何帮助。
library(shiny)
library(ggvis)
renderInputs <- function() {
wellPanel(
## Take hour information from user for filtering.
checkboxGroupInput("hour", "Hours",
c("1" = 1,
"8" = 8,
"13" = 13,
"14" = 14,
"15" = 15,
"18" = 18),
selected = c(1, 8, 13, 15),
inline = T)
)
}
shinyUI(fluidPage(
titlePanel("Analysis"),
fluidRow(
## Inputs
column(4, renderInputs()),
## Plot data.
column(8,h2("Monthly Visitors"),
ggvisOutput("plotM")
)),
## Plot quarterly data.
fluidRow(
column(7, h2('Quarterly Summary'),
ggvisOutput("plotQ"))
)
))
library(shiny)
library(dplyr)
library(zoo)
data <- read.csv("file.csv")
data$date <- as.yearmon(paste0(data$year, "-", data$month))
shinyServer(function(input, output) {
totals <- reactive({
data %>%
filter(hour %in% input$hour) %>%
group_by(date) %>%
summarize(visitors = sum(count))
})
## Quarterly, with "reactive" approach.
quarterly <- reactive({
totals() %>%
mutate(quarter = as.yearqtr(date)) %>%
group_by(quarter) %>%
summarize(visitors = sum(count))
})
## Quarterly data and percentage changes (redudant approach).
# quarterly <- reactive({
# data %>%
# filter(hour %in% input$hour) %>%
# mutate(quarter = as.yearqtr(date)) %>%
# group_by(quarter) %>%
# summarize(visitors = sum(count))
# })
## Create estimated quarterly chart.
visM <- reactive({
totals() %>%
ggvis(~as.factor(date), ~visitors) %>%
layer_points()
})
## Create estimated quarterly chart.
visQ <- reactive({
quarterly() %>%
ggvis(~as.factor(quarter), ~visitors) %>%
layer_bars(fill := "green")
})
## Send plots to UI.
visM %>% bind_shiny("plotM")
visQ %>% bind_shiny("plotQ")
})
感谢。
答案 0 :(得分:0)
谢谢@NicE,我完全错过了!在解决了这个愚蠢的错误后,它正常工作。感谢K. Rohde。
## Quarterly, with "reactive" approach.
quarterly <- reactive({
totals() %>%
mutate(quarter = as.yearqtr(date)) %>%
group_by(quarter) %>%
summarize(visitors = sum(visitors))
})