我使用CMake作为我的代码的构建系统,涉及CUDA。我正在考虑自动执行决定哪个compute_XX
和arch_XX
我需要传递给我的nvcc以便为我当前机器上的GPU编译的任务。
有没有办法做到这一点:
CMake FindCUDA
是否帮助您确定这些交换机的值?
答案 0 :(得分:5)
我的策略是编译并运行一个bash脚本来探测卡并返回cmake的gencode。灵感来自University of Chicago's SLURM。要处理错误或多个gpus或其他情况,请根据需要进行修改。
在项目文件夹中创建一个文件cudaComputeVersion.bash并确保它可以从shell执行。进入这个文件:
#!/bin/bash
# create a 'here document' that is code we compile and use to probe the card
cat << EOF > /tmp/cudaComputeVersion.cu
#include <stdio.h>
int main()
{
cudaDeviceProp prop;
cudaGetDeviceProperties(&prop,0);
int v = prop.major * 10 + prop.minor;
printf("-gencode arch=compute_%d,code=sm_%d\n",v,v);
}
EOF
# probe the card and cleanup
/usr/local/cuda/bin/nvcc /tmp/cudaComputeVersion.cu -o /tmp/cudaComputeVersion
/tmp/cudaComputeVersion
rm /tmp/cudaComputeVersion.cu
rm /tmp/cudaComputeVersion
在你的CMakeLists.txt中:
# at cmake-build-time, probe the card and set a cmake variable
execute_process(COMMAND ${CMAKE_CURRENT_SOURCE_DIR}/cudaComputeVersion.bash OUTPUT_VARIABLE GENCODE)
# at project-compile-time, include the gencode into the compile options
set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS}; "${GENCODE}")
# this makes CMake all chatty and allows you to see that GENCODE was set correctly
set(CMAKE_VERBOSE_MAKEFILE TRUE)
欢呼声
答案 1 :(得分:2)
比@ orthopteroid的答案略有改进,这几乎可以确保生成一个独特的临时文件,并且只需要一个而不是两个临时文件。
以下内容进入scripts/get_cuda_sm.sh
:
#!/bin/bash
#
# Prints the compute capability of the first CUDA device installed
# on the system, or alternatively the device whose index is the
# first command-line argument
device_index=${1:-0}
timestamp=$(date +%s.%N)
gcc_binary=$(which g++)
gcc_binary=${gcc_binary:-g++}
cuda_root=${CUDA_DIR:-/usr/local/cuda}
CUDA_INCLUDE_DIRS=${CUDA_INCLUDE_DIRS:-${cuda_root}/include}
CUDA_CUDART_LIBRARY=${CUDA_CUDART_LIBRARY:-${cuda_root}/lib64/libcudart.so}
generated_binary="/tmp/cuda-compute-version-helper-$$-$timestamp"
# create a 'here document' that is code we compile and use to probe the card
source_code="$(cat << EOF
#include <stdio.h>
#include <cuda_runtime_api.h>
int main()
{
cudaDeviceProp prop;
cudaError_t status;
int device_count;
status = cudaGetDeviceCount(&device_count);
if (status != cudaSuccess) {
fprintf(stderr,"cudaGetDeviceCount() failed: %s\n", cudaGetErrorString(status));
return -1;
}
if (${device_index} >= device_count) {
fprintf(stderr, "Specified device index %d exceeds the maximum (the device count on this system is %d)\n", ${device_index}, device_count);
return -1;
}
status = cudaGetDeviceProperties(&prop, ${device_index});
if (status != cudaSuccess) {
fprintf(stderr,"cudaGetDeviceProperties() for device ${device_index} failed: %s\n", cudaGetErrorString(status));
return -1;
}
int v = prop.major * 10 + prop.minor;
printf("%d\\n", v);
}
EOF
)"
echo "$source_code" | $gcc_binary -x c++ -I"$CUDA_INCLUDE_DIRS" -o "$generated_binary" - -x none "$CUDA_CUDART_LIBRARY"
# probe the card and cleanup
$generated_binary
rm $generated_binary
以下内容进入CMakeLists.txt
或CMake模块:
if (NOT CUDA_TARGET_COMPUTE_CAPABILITY)
if("$ENV{CUDA_SM}" STREQUAL "")
set(ENV{CUDA_INCLUDE_DIRS} "${CUDA_INCLUDE_DIRS}")
set(ENV{CUDA_CUDART_LIBRARY} "${CUDA_CUDART_LIBRARY}")
set(ENV{CMAKE_CXX_COMPILER} "${CMAKE_CXX_COMPILER}")
execute_process(COMMAND
bash -c "${CMAKE_CURRENT_SOURCE_DIR}/scripts/get_cuda_sm.sh"
OUTPUT_VARIABLE CUDA_TARGET_COMPUTE_CAPABILITY_)
else()
set(CUDA_TARGET_COMPUTE_CAPABILITY_ $ENV{CUDA_SM})
endif()
set(CUDA_TARGET_COMPUTE_CAPABILITY "${CUDA_TARGET_COMPUTE_CAPABILITY_}"
CACHE STRING "CUDA compute capability of the (first) CUDA device on \
the system, in XY format (like the X.Y format but no dot); see table \
of features and capabilities by capability X.Y value at \
https://en.wikipedia.org/wiki/CUDA#Version_features_and_specifications")
execute_process(COMMAND
bash -c "echo -n $(echo ${CUDA_TARGET_COMPUTE_CAPABILITY})"
OUTPUT_VARIABLE CUDA_TARGET_COMPUTE_CAPABILITY)
execute_process(COMMAND
bash -c "echo ${CUDA_TARGET_COMPUTE_CAPABILITY} | sed 's/^\\([0-9]\\)\\([0-9]\\)/\\1.\\2/;' | xargs echo -n"
OUTPUT_VARIABLE FORMATTED_COMPUTE_CAPABILITY)
message(STATUS
"CUDA device-side code will assume compute capability \
${FORMATTED_COMPUTE_CAPABILITY}")
endif()
set(CUDA_GENCODE
"arch=compute_${CUDA_TARGET_COMPUTE_CAPABILITY}, code=compute_${CUDA_TARGET_COMPUTE_CAPABILITY}")
set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} -gencode ${CUDA_GENCODE} )
答案 2 :(得分:0)
使用CMake 3.7或更高版本时,可以在cuda_select_nvcc_arch_flags()
模块中使用FindCUDA宏,而无需任何其他脚本。
include(FindCUDA)
set(CUDA_ARCH_LIST Auto CACHE LIST
"List of CUDA architectures (e.g. Pascal, Volta, etc) or \
compute capability versions (6.1, 7.0, etc) to generate code for. \
Set to Auto for automatic detection (default)."
)
cuda_select_nvcc_arch_flags(CUDA_ARCH_FLAGS ${CUDA_ARCH_LIST})
list(APPEND CUDA_NVCC_FLAGS ${CUDA_ARCH_FLAGS})
例如,以上方法在我的机器上将CUDA_ARCH_FLAGS
设置为-gencode arch=compute_61,code=sm_61
。
用户可以配置CUDA_ARCH_LIST
缓存变量,以生成用于特定计算功能的代码,而不是自动检测。
注意:从CMake 3.10开始不推荐使用FindCUDA模块。但是,在最新的CMake版本(v3.14)中似乎没有提供与cuda_select_nvcc_arch_flags()
宏等效的替代方法。有关更多详细信息,请参见CMake问题跟踪器上的relevant issue。