我正在使用谷歌路线api为路线绘制折线。有没有人有任何检查当前位置是否在折线上/附近的例子?试图确定用户当前位置是否在该行的x米范围内,如果不是,我将发出新请求并重新绘制新路线。
干杯!
答案 0 :(得分:1)
以下是我的解决方案:只需将我创建的bdccGeoDistanceAlgorithm
类添加到项目中,然后使用bdccGeoDistanceCheckWithRadius
方法检查当前位置是否在折线上或附近(折线等于LatLng列表)分数)
你也可以从方法中获得距离
班级bdccGeoDistanceAlgorithm
import com.google.android.gms.maps.model.LatLng;
import java.util.List;
public class bdccGeoDistanceAlgorithm {
// distance in meters from GLatLng point to GPolyline or GPolygon poly
public static boolean bdccGeoDistanceCheckWithRadius(List<LatLng> poly, LatLng point, int radius)
{
int i;
bdccGeo p = new bdccGeo(point.latitude,point.longitude);
for(i=0; i < (poly.size()-1) ; i++)
{
LatLng p1 = poly.get(i);
bdccGeo l1 = new bdccGeo(p1.latitude,p1.longitude);
LatLng p2 = poly.get(i+1);
bdccGeo l2 = new bdccGeo(p2.latitude,p2.longitude);
double distance = p.function_distanceToLineSegMtrs(l1, l2);
if(distance < radius)
return true;
}
return false;
}
// object
public static class bdccGeo
{
public double lat;
public double lng;
public double x;
public double y;
public double z;
public bdccGeo(double lat, double lon) {
this.lat = lat;
this.lng = lng;
double theta = (lon * Math.PI / 180.0);
double rlat = function_bdccGeoGeocentricLatitude(lat * Math.PI / 180.0);
double c = Math.cos(rlat);
this.x = c * Math.cos(theta);
this.y = c * Math.sin(theta);
this.z = Math.sin(rlat);
}
//returns in meters the minimum of the perpendicular distance of this point from the line segment geo1-geo2
//and the distance from this point to the line segment ends in geo1 and geo2
public double function_distanceToLineSegMtrs(bdccGeo geo1,bdccGeo geo2)
{
//point on unit sphere above origin and normal to plane of geo1,geo2
//could be either side of the plane
bdccGeo p2 = geo1.function_crossNormalize(geo2);
// intersection of GC normal to geo1/geo2 passing through p with GC geo1/geo2
bdccGeo ip = function_bdccGeoGetIntersection(geo1,geo2,this,p2);
//need to check that ip or its antipode is between p1 and p2
double d = geo1.function_distance(geo2);
double d1p = geo1.function_distance(ip);
double d2p = geo2.function_distance(ip);
//window.status = d + ", " + d1p + ", " + d2p;
if ((d >= d1p) && (d >= d2p))
return function_bdccGeoRadiansToMeters(this.function_distance(ip));
else
{
ip = ip.function_antipode();
d1p = geo1.function_distance(ip);
d2p = geo2.function_distance(ip);
}
if ((d >= d1p) && (d >= d2p))
return function_bdccGeoRadiansToMeters(this.function_distance(ip));
else
return function_bdccGeoRadiansToMeters(Math.min(geo1.function_distance(this),geo2.function_distance(this)));
}
// More Maths
public bdccGeo function_crossNormalize(bdccGeo b)
{
double x = (this.y * b.z) - (this.z * b.y);
double y = (this.z * b.x) - (this.x * b.z);
double z = (this.x * b.y) - (this.y * b.x);
double L = Math.sqrt((x * x) + (y * y) + (z * z));
bdccGeo r = new bdccGeo(0,0);
r.x = x / L;
r.y = y / L;
r.z = z / L;
return r;
}
// Returns the two antipodal points of intersection of two great
// circles defined by the arcs geo1 to geo2 and
// geo3 to geo4. Returns a point as a Geo, use .antipode to get the other point
public bdccGeo function_bdccGeoGetIntersection(bdccGeo geo1,bdccGeo geo2, bdccGeo geo3,bdccGeo geo4)
{
bdccGeo geoCross1 = geo1.function_crossNormalize(geo2);
bdccGeo geoCross2 = geo3.function_crossNormalize(geo4);
return geoCross1.function_crossNormalize(geoCross2);
}
public double function_distance(bdccGeo v2)
{
return Math.atan2(v2.function_crossLength(this), v2.function_dot(this));
}
//More Maths
public double function_crossLength(bdccGeo b)
{
double x = (this.y * b.z) - (this.z * b.y);
double y = (this.z * b.x) - (this.x * b.z);
double z = (this.x * b.y) - (this.y * b.x);
return Math.sqrt((x * x) + (y * y) + (z * z));
}
//Maths
public double function_dot(bdccGeo b)
{
return ((this.x * b.x) + (this.y * b.y) + (this.z * b.z));
}
//from Radians to Meters
public double function_bdccGeoRadiansToMeters(double rad)
{
return rad * 6378137.0; // WGS84 Equatorial Radius in Meters
}
// point on opposite side of the world to this point
public bdccGeo function_antipode()
{
return this.function_scale(-1.0);
}
//More Maths
public bdccGeo function_scale(double s)
{
bdccGeo r = new bdccGeo(0,0);
r.x = this.x * s;
r.y = this.y * s;
r.z = this.z * s;
return r;
}
// Convert from geographic to geocentric latitude (radians).
public double function_bdccGeoGeocentricLatitude(double geographicLatitude)
{
double flattening = 1.0 / 298.257223563;//WGS84
double f = (1.0 - flattening) * (1.0 - flattening);
return Math.atan((Math.tan(geographicLatitude) * f));
}
}
}