使用OpenCV从扫描的纸张中提取精确区域?

时间:2016-02-17 11:52:58

标签: python opencv

我们基本上已经在纸上设计了一个模板,并且需要OpenCV从扫描的A4尺寸纸张中提取精确区域(在该点(5cm,7cm)处说一个5cmx5cm的区域)。

现在我在4个角落放置了4个对象(4个六边形),并使用模板匹配代码(找到here)来尝试获取所有4个六边形的位置,然后将其用作我的导航页面指南。但是模板匹配代码返回了很多点(非常接近彼此)。

这是正确的方法吗?是否(并且我应该使用)任何算法来找到"意思是"这些要点还是有一个更好的方法来解决这个问题?

import cv2
import numpy as np
from matplotlib import pyplot as plt

img_rgb = cv2.imread('Template.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('hex.png',0)
w, h = template.shape[::-1]

res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.8
loc = np.where( res >= threshold)
for pt in zip(*loc[::-1]):
    cv2.circle(img_rgb, pt, 1, (0,0,255))

cv2.imwrite('res.png',img_rgb)

以下是图片:Basic Template Image to be found

结果: enter image description here

1 个答案:

答案 0 :(得分:1)

好的,您正在对结果图像应用阈值。 即

res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.8

如果您想使用minMaxLoc&找到最大值。它在教程页面本身中描述。更多info here

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('messi5.jpg',0)
img2 = img.copy()
template = cv2.imread('template.jpg',0)
w, h = template.shape[::-1]

# All the 6 methods for comparison in a list
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
            'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']

for meth in methods:
    img = img2.copy()
    method = eval(meth)

    # Apply template Matching
    res = cv2.matchTemplate(img,template,method)
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

    # If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
    if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
        top_left = min_loc
    else:
        top_left = max_loc
    bottom_right = (top_left[0] + w, top_left[1] + h)

    cv2.rectangle(img,top_left, bottom_right, 255, 2)

    plt.subplot(121),plt.imshow(res,cmap = 'gray')
    plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
    plt.subplot(122),plt.imshow(img,cmap = 'gray')
    plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
    plt.suptitle(meth)

    plt.show()