这是我的代码
import os
import sys
import numpy as np
import scipy
from scipy.optimize import leastsq
def peval (inp_mat,p):
m0,m1,m2,m3,m4,m5,m6,m7 = p
out_mat = np.array(np.zeros(inp_mat.shape,dtype=np.float32))
mid = inp_mat.shape[0]/2
for xy in range(0,inp_mat.shape[0]):
if (xy<(inp_mat.shape[0]/2)):
out_mat[xy] = ( ( (inp_mat[xy+mid]*m0)+(inp_mat[xy]*m1)+ m2 ) /( (inp_mat[xy+mid]*m6)+(inp_mat[xy]*m7)+1 ) )
else:
out_mat[xy] = ( ( (inp_mat[xy]*m3)+(inp_mat[xy-mid]*m4)+ m5 ) /( (inp_mat[xy]*m6)+(inp_mat[xy-mid]*m7)+1 ) )
return np.array(out_mat)
def residuals(p, out_mat, inp_mat):
m0,m1,m2,m3,m4,m5,m6,m7 = p
err=np.array(np.zeros(inp_mat.shape,dtype=np.float32))
if (out_mat.shape == inp_mat.shape):
for xy in range(0,inp_mat.shape[0]):
err[xy] = err[xy]+ (out_mat[xy] -inp_mat[xy])
return np.array(err)
f = open('/media/anilil/Data/Datasets/repo/txt_op/vid.txt','r')
x = np.loadtxt(f,dtype=np.int16,comments='#',delimiter='\t')
nof = x.shape[0]/72 # Find the number of frames
x1 = x.reshape(-1,60,40)
x1_1= x1[0,:,:].flatten()
x1_2= x1[1,:,:].flatten()
x= []
y= []
for xy in range(1,50,1):
y.append(x1[xy,:,:].flatten())
x.append(x1[xy-1,:,:].flatten())
x=np.array(x,dtype=np.float32)
y=np.array(y,dtype=np.float32)
length = x1_1.shape#initail guess
p0 = np.array([1,1,1,1,1,1,1,1],dtype=np.float32)
abc=leastsq(residuals, p0,args=(y,x))
print ('Size of first matrix is '+str(x1_1.shape))
print ('Size of first matrix is '+str(x1_2.shape))
print ("Done with program")
我尝试在大多数地方添加np.array没有用。 有人可以帮助我吗?
这里的另一个问题是我是否通过添加所有errorsnp.sum(err,axis=1)
将残差()的输出作为单个值。或者保持原样?
我在return np.sum(err,axis=1)
函数中residuals()
。初始猜测没有变化。它只是保持不变。
I.E错误是输入输出映射中的每个项目。或总体上的组合错误?
ValueError: object too deep for desired array
Traceback (most recent call last):
File "/media/anilil/Data/charm/mv_clean/.idea/nose_reduction_mpeg.py", line 49, in <module>
abc=leastsq(residuals, p0,args=(y,x))
File "/usr/lib/python2.7/dist-packages/scipy/optimize/minpack.py", line 378, in leastsq
gtol, maxfev, epsfcn, factor, diag)
minpack.error: Result from function call is not a proper array of floats.
答案 0 :(得分:1)
leastsq
需要从residuals
函数返回一维数组。
目前,您计算整个图像的残差并将其作为2D数组返回。
简单的解决方法是压平残差数组(将2D数组转换为1D数据)。
所以不要回来
return np.array(err)
改为
return err.flatten()
请注意,err
已经是一个numpy数组,所以不需要在返回之前进行转换(我想在你尝试调试它时会滑入!)