印刷完成coo_matrix

时间:2016-02-16 05:27:42

标签: python python-2.7 numpy scipy sparse-matrix

我尝试使用另一个矩阵实例化coo_matrix。当我尝试打印(1, 9) 1.0 (1, 10) 1.0 (1, 11) 1.0 (1, 25) 1.0 (1, 47) 1.0 (2, 1) 1.0 (2, 7) 1.0 (2, 11) 3.0 (2, 12) 1.0 (2, 13) 1.0 (2, 15) 2.0 (2, 19) 1.0 (2, 42) 1.0 (3, 0) 1.0 (4, 20) 1.0 (4, 22) 1.0 (4, 24) 1.0 : : (45, 0) 1.0 (45, 7) 1.0 (45, 14) 2.0 (45, 20) 1.0 (45, 26) 1.0 (45, 38) 1.0 (45, 40) 1.0 (46, 11) 1.0 (46, 19) 1.0 (46, 36) 1.0 (46, 41) 1.0 (46, 47) 1.0 时,输出为:

coo_matrix

如何打印完整的set_printoptions(threshold = 'nan')?我尝试使用import java.util.*; class bday { public static void main(String[] args){ Scanner yearfinder = new Scanner(System.in); System.out.println("Please type any year"); int year = yearfinder.nextInt(); Scanner monthfinder = new Scanner(System.in); System.out.println("Please type any month"); String textmonth = monthfinder.nextLine(); int month; switch(textmonth) { case ("january"): month = 1; break; case ("february"): month = 2; break; case ("march"): month = 3; break; case ("april"): month = 4; break; case ("may"): month = 5; break; case ("june"): month = 6; break; case ("july"): month = 7; break; case ("august"): month = 8; break; case ("september"): month = 9; break; case ("october"): month = 10; break; case ("november"): month = 11; break; case ("december"): month = 12; break; default: System.out.println("The month you input was invalid"); } Scanner datefinder = new Scanner(System.in); System.out.println("Please type any day"); int date = datefinder.nextInt(); System.out.println("The date you gave was " + date + "/" + month + "/" + year); } } //Jan 1 1900 was a monday. ,但它并没有解决这个问题。

3 个答案:

答案 0 :(得分:1)

您可以使用.todense()方法将稀疏矩阵转换为密集矩阵:

print(my_coo_matrix.todense())

编辑:您的问题听起来也像是要打印零值元素,但是如果您只想打印非零元素,则可以手动迭代矩阵:

for row, col, value in zip(my_coo_matrix.row, my_coo_matrix.col, my_coo_matrix.data):
    print "({0}, {1}) {2}".format(row, col, value)

答案 1 :(得分:0)

我发现使用spy()直观地表示它很有帮助。

spy(coo_matrix)

答案 2 :(得分:0)

(对于非常大的 coo_matrix)导出到 csv,然后将其保存为 xlsx 可能会有所帮助。

示例:

import numpy
numpy.savetxt('coo_matrix.csv', coo_matrix.todense(), delimiter = ',')