我一直在尝试非常基本的经常性网络,并且看到了非常奇怪的行为。我花了很多时间试图缩小它出错的地方,最后我发现当使用复发层时,由theano和有限微分计算的梯度完全不同。这是怎么回事?
以下是我遇到的问题:
我有n_seq维度n_feat的n_steps特征向量序列,以及它们在n_class类中的标签。标签是每个时间步,而不是每个序列(所以我有n_seq * n_steps标签)。 我的目标是训练模型以正确分类特征向量。
这是我的最小例子:
(实际上,数据中会有一些顺序信息,因此循环网络应该做得更好,但在这个最小的例子中,我生成纯粹的随机数据,这足以揭露错误。)
我创建了2个最小网络:
1)常规前馈(不是重复),只有输入层和带softmax的输出层(没有隐藏层)。我通过考虑“批量”n_seq * n_steps“独立”特征向量来丢弃顺序信息。
2)相同的网络,但输出层是重复的。批处理现在的大小为n_seq,每个输入都是n_steps特征向量的完整序列。最后,我将输出重新整形为大小为n_seq * n_steps的“批处理”。
如果将周期性权重设置为0,则2个网络应该是等效的。实际上,我确实看到两种网络的初始损耗在这种情况下都是相同的,无论我的前馈权重的随机初始化是什么。 如果我实现有限区分,我也得到前馈权重的(初始)梯度是相同的(他们应该)。然而,从theano获得的梯度完全不同(但仅适用于循环网络)。
以下是我的代码示例结果:
注意:第一次运行时,我收到此警告,我不知道触发它的是什么,但我敢打赌它与我的问题有关。 警告:在严格模式下,所有必需的共享变量必须作为non_sequences的一部分传递 '必须作为non_sequences的一部分传递',警告)
非常感谢任何见解!
CODE:
import numpy as np
import theano
import theano.tensor as T
import lasagne
# GENERATE RANDOM DATA
n_steps = 10**4
n_seq = 10
n_feat = 2
n_class = 2
data_X = lasagne.utils.floatX(np.random.randn(n_seq, n_steps, n_feat))
data_y = np.random.randint(n_class, size=(n_seq, n_steps))
# INITIALIZE WEIGHTS
# feed-forward weights (random)
W = theano.shared(lasagne.utils.floatX(np.random.randn(n_feat,n_class)), name="W")
# recurrent weights (set to 0)
W_rec = theano.shared(lasagne.utils.floatX(np.zeros((n_class,n_class))), name="Wrec")
# bias (set to 0)
b = theano.shared(lasagne.utils.floatX(np.zeros((n_class,))), name="b")
def create_functions(model, X, y, givens):
"""Helper for building a network."""
loss = lasagne.objectives.categorical_crossentropy(lasagne.layers.get_output(model, X), y).mean()
get_loss = theano.function(
[], loss,
givens=givens
)
all_params = lasagne.layers.get_all_params(model)
get_theano_grad = [
theano.function(
[], g,
givens=givens
)
for g in theano.grad(loss, all_params)
]
return get_loss, get_theano_grad
def feedforward():
"""Creates a minimal feed-forward network."""
l_in = lasagne.layers.InputLayer(
shape=(n_seq*n_steps, n_feat),
)
l_out = lasagne.layers.DenseLayer(
l_in,
num_units=n_class,
nonlinearity=lasagne.nonlinearities.softmax,
W=W,
b=b
)
model = l_out
X = T.matrix('X')
y = T.ivector('y')
givens={
X: theano.shared(data_X.reshape((n_seq*n_steps, n_feat))),
y: T.cast(theano.shared(data_y.reshape((n_seq*n_steps,))), 'int32'),
}
return (model,) + create_functions(model, X, y, givens)
def recurrent():
"""Creates a minimal recurrent network."""
l_in = lasagne.layers.InputLayer(
shape=(n_seq, n_steps, n_feat),
)
l_out = lasagne.layers.RecurrentLayer(
l_in,
num_units=n_class,
nonlinearity=lasagne.nonlinearities.softmax,
gradient_steps=1,
W_in_to_hid=W,
W_hid_to_hid=W_rec,
b=b,
)
l_reshape = lasagne.layers.ReshapeLayer(l_out, (n_seq*n_steps, n_class))
model = l_reshape
X = T.tensor3('X')
y = T.ivector('y')
givens={
X: theano.shared(data_X),
y: T.cast(theano.shared(data_y.reshape((n_seq*n_steps,))), 'int32'),
}
return (model,) + create_functions(model, X, y, givens)
def finite_diff(param, loss_func, epsilon):
"""Computes a finitie differentation gradient of loss_func wrt param."""
loss = loss_func()
P = param.get_value()
grad = np.zeros_like(P)
it = np.nditer(P , flags=['multi_index'])
while not it.finished:
ind = it.multi_index
dP = P.copy()
dP[ind] += epsilon
param.set_value(dP)
grad[ind] = (loss_func()-loss)/epsilon
it.iternext()
param.set_value(P)
return grad
def theano_diff(net, get_theano_grad):
for p,g in zip(lasagne.layers.get_all_params(net), get_theano_grad):
if p.name == "W":
gW = np.array(g())
if p.name == "b":
gb = np.array(g())
return gW, gb
def compare_ff_rec():
eps = 1e-3 # for finite differentiation
ff, get_loss_ff, get_theano_grad_ff = feedforward()
rec, get_loss_rec, get_theano_grad_rec = recurrent()
gW_ff_finite = finite_diff(W, get_loss_ff, eps)
gb_ff_finite = finite_diff(b, get_loss_ff, eps)
gW_rec_finite = finite_diff(W, get_loss_rec, eps)
gb_rec_finite = finite_diff(b, get_loss_rec, eps)
gW_ff_theano, gb_ff_theano = theano_diff(ff, get_theano_grad_ff)
gW_rec_theano, gb_rec_theano = theano_diff(rec, get_theano_grad_rec)
print "\nloss:"
print "FF:\t", get_loss_ff()
print "REC:\t", get_loss_rec()
print "\ngradients:"
print "W"
print "FF finite:\n", gW_ff_finite.ravel()
print "FF theano:\n", gW_ff_theano.ravel()
print "REC finite:\n", gW_rec_finite.ravel()
print "REC theano:\n", gW_rec_theano.ravel()
print "b"
print "FF finite:\n", gb_ff_finite.ravel()
print "FF theano:\n", gb_ff_theano.ravel()
print "REC finite:\n", gb_rec_finite.ravel()
print "REC theano:\n", gb_rec_theano.ravel()
compare_ff_rec()
结果:
loss:
FF: 0.968060314655
REC: 0.968060314655
gradients:
W
FF finite:
[ 0.23925304 -0.23907423 0.14013052 -0.14001131]
FF theano:
[ 0.23917811 -0.23917811 0.14011626 -0.14011627]
REC finite:
[ 0.23931265 -0.23907423 0.14024973 -0.14001131]
REC theano:
[ 1.77408110e-05 -1.77408110e-05 1.21677476e-05 -1.21677458e-05]
b
FF finite:
[ 0.00065565 -0.00047684]
FF theano:
[ 0.00058145 -0.00058144]
REC finite:
[ 0.00071526 -0.00047684]
REC theano:
[ 7.53380482e-06 -7.53380482e-06]
答案 0 :(得分:0)
问题来自BPTT中gradient_steps剪辑的非直观(可能)效果,如下所述: https://groups.google.com/forum/#!topic/theano-users/QNge6fC6C4s