我是hadoop和python的新手。我想知道如何改进算法。
这是问题所在:(使用mapreduce结构解决它)
我们将根据新浪微博用户的关系提供不同大小的三个数据集。较小的数据集包含1000个用户,中等数据库包含大约250万用户,而大数据包含480万用户。每个用户都由其唯一的ID号表示。
数据文件的格式如下(不同的关注者用空格分隔):
followee_1_id:follower_1_id follower_2_id follower_3_id ....
followee_2_id:follower_1_id follower_6_id follower_7_id .... ...
例如
A:B D
B:A
C:A B E
E:A B C
社区检测的输出是每个用户,我们想知道 TOP K 类似的人。 输出格式应为(由空格分隔的不同类似人物):
User_1:Similiar_Person_1 Similiar_Person_2 ... Similiar_Person_K
User_2:Similiar_Person_1 Similiar_Person_2 ... Similiar_Person_K
(其中K表示10,000)
我的解决方案:
我的算法是维护一个最多10,000个相似人的列表,并在类似人数达到10,001时对列表进行排序。然后弹出最后一个。之后,我发现数据集很大,大约(n-10000).n.log(n)
时间执行,有关如何改善的任何建议吗?
我的观察:
经过一些粗略的计算,我发现如果相似的人很小,我们应该保持缓冲区大。例如,如果一个人有5000个相似的人,那么我们可以使列表的上限大到100,000。然后我们只需要对列表进行一次排序,即在打印结果之前。
#!/usr/bin/env python
from operator import itemgetter
import sys
def print_list_of_dict(list_of_dic):
for v in list_of_dic:
print v['name'],
print
return
current_person1 = None
current_person2 = None
current_S = 0
#declare a list of dictionary
ranking = []
d = {}
flag = 0
# input comes from STDIN
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# parse the input we got from mapper.py
person1, person2 = line.split()
# first person first relation
if not current_person1:
current_person1 = person1
current_person2 = person2
current_S += 1
else:
# same person , same relation
if current_person1 == person1 and current_person2 == person2:
current_S += 1
flag = 0
# same person , different relation
elif current_person1 == person1 and current_person2 != person2:
d['name'] = current_person2
d['similarity'] = current_S
ranking.append(d.copy())
if len(ranking) == 10001:
ranking = sorted(ranking,key=itemgetter('similarity'),reverse = True)
ranking.pop()
current_person2 = person2
current_S = 1
flag = 1
# different person
else:
d['name'] = current_person2
d['similarity'] = current_S
ranking.append(d.copy())
if len(ranking) == 10001:
ranking = sorted(ranking,key=itemgetter('similarity'),reverse = True)
ranking.pop()
ranking = sorted(ranking,key=itemgetter('similarity'),reverse = True)
print current_person1,':',
print_list_of_dict(ranking)
# a new dictionary
ranking = []
current_person1 = person1
current_person2 = person2
current_S = 1
flag = 2
# add and print the last relation to dictionary
d['name'] = current_person2
d['similarity'] = current_S
ranking.append(d.copy())
if len(ranking) == 10001:
ranking = sorted(ranking,key=itemgetter('similarity'),reverse = True)
ranking.pop()
ranking = sorted(ranking,key=itemgetter('similarity'),reverse = True)
print current_person1,':',
print_list_of_dict(ranking)
答案 0 :(得分:0)
解决,将所有内容存储在内存中,并在排序一次后仅打印前10000个。