用迭代参数求解微分方程

时间:2016-02-13 23:31:32

标签: python ode

我正在使用(scipy.integrate.odeint)和(scipy.integrate.ode)来解决微分方程。我有一个简单的例子:

dy/dt=f[i]*t

和f是对应于t [i]的参数,与代码中的示例相同;即

t[0]=0.0, f[0]=0.0

t[1]=0.1, f[1]=0.1

...

t[10]=1.0, f[1]=1.0

手动结果应为:

y=1/2*f[i]*t**2,因为y的初始值为零

那么,y的数值结果应该是 [0.0, 0.0005, 0.004, 0.0135, 0.032, 0.0625, 0.108, 0.1715, 0.256, 0.3645, 0.5]。但是当我使用scipy.integrate.ode时,我得到了不同的结果。我的问题是: 我使用过奥德错了吗?我怎样才能减少错误? 2.我可以使用odeint或其他方法来解决这个问题吗?

代码如下:

import matplotlib.pyplot as pl
import numpy as np
import sympy as sp
from scipy.integrate import odeint
from scipy.integrate import ode
import numpy as np

def func(t, y, f):
    return f*t

t=np.linspace(0.0, 1.0, 11)
f=np.linspace(0.0, 1.0, 11)
dt = t[1]-t[0]

sol= np.empty_like(t)
r = ode(func).set_integrator("dopri5")
r.set_initial_value(0, 0).set_f_params(f[0])

# result of ode
for i in xrange(len(t)):
    r.set_f_params(f[i])
    r.integrate(r.t+dt)
    sol[i] = r.y

res=[]
# result of t**3/3
for a in np.linspace(0.0, 1, 11):
    f=(a**3)/3
    print f
    res.append(f)

# result3
res2=[]
for n in range(0, 11):
    dt=0.1
    y= t[n]**3/3 - dt*t[n]**2/4 - dt**2*t[n]/12
    res2.append(y)

pl.plot(sol)
pl.plot(res)  
pl.plot(res2)
pl.show()

我将这个例子扩展到二维微分方程:

du/dt=-u(v-f[i])

dv/dt=v(f[i]-u)

初始值:u(0)= v(0)= 1。以下是代码:

import matplotlib.pyplot as pl
import numpy as np
import sympy as sp
from scipy.integrate import odeint
from scipy.integrate import ode
from numpy import array

def func(t, y, f):
    u,v=y
    dotu=-u*(v-f)
    dotv=v*(f-u)
    return array([dotu, dotv])

t=np.linspace(0.0, 10, 11)
f=np.linspace(0.0, 20, 11)

dt = t[1]-t[0]

# result correct
y0=array([1.0, 1.0])
sol= np.empty([11, 2])

sol[0] = array([1.0, 1.0])
r = ode(func).set_integrator("dopri5")
r.set_initial_value(t[0], sol[0]).set_f_params(f[0])

for i in range(len(t)-1):
    r.set_f_params(f[i])
    r.integrate(r.t+dt)
    sol[i+1] = r.y

pl.plot(sol[:,0])

但我收到一条错误消息:

Traceback (most recent call last): File "C:\Users\odeint test.py", line 26, in <module> sol[0] = array([1.0, 1.0]) ValueError: setting an array element with a sequence.

1 个答案:

答案 0 :(得分:1)

你正在做的更接近于积分y&#39;(t)= t ^ 2,y(0)= 0,导致y(t)= t ^ 3/3。你将t ^ 2视为f * t并将f修改为t的步进函数版本只会增加一点扰动。

t[i]*t超过t[i]..t[i+1]的积分是

y[i+1]-y[i] = t[i]/2*(t[i+1]^2-t[i]^2) 
= (t[i+1]^3-t[i]^3)/3 - (t[i+1]-t[i])^2*(t[i]+2t[i+1])/6
= (t[i+1]^3-t[i]^3)/3 - dt*(t[i+1]^2-t[i]^2)/4 - dt^2*(t[i+1]-t[i])/12

总结大约

y[n] = t[n]^3/3 - dt*t[n]^2/4 - dt^2*t[n]/12

如何获得正确的解决方案

sol= np.empty_like(t)

设置初始值

sol[0] = 0
r = ode(func).set_integrator("dopri5")

使用初始点作为初始点,两者都明确指出索引0处的点是固定的并且&#34;用完了#34;

r.set_initial_value(t[0], sol[0]).set_f_params(f[0])

# result of ode

t[i]点开始指向t[i+1]点。结束i+1=len(t)i=len(t)-1

for i in xrange(len(t)-1):
    r.set_f_params(f[i])
    r.integrate(r.t+dt)

t[i]+dt处的值是t[i+1]

处的值
    sol[i+1] = r.y

通过这些更改,数值解与手动计算的解决方案一致。