我可以访问大型IBM Power8机器,并希望在其上安装TensorFlow。当然,我尝试了快速pip安装,但它失败了:
sudo pip install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.6.0-cp27-none-linux_x86_64.whl
tensorflow-0.6.0-cp27-none-linux_x86_64.whl is not a supported wheel on this platform.
Storing debug log for failure in /home/pv/.pip/pip.log
不幸的是,pip.log几乎没有什么有用的信息。
/usr/bin/pip run on Sat Feb 6 17:29:34 2016
tensorflow-0.6.0-cp27-none-linux_x86_64.whl is not a supported wheel on this platform.
Exception information:
Traceback (most recent call last):
File "/usr/lib/python2.7/dist-packages/pip/basecommand.py", line 122, in main
status = self.run(options, args)
File "/usr/lib/python2.7/dist-packages/pip/commands/install.py", line 283, in run
InstallRequirement.from_line(name, None))
File "/usr/lib/python2.7/dist-packages/pip/req.py", line 168, in from_line
raise UnsupportedWheel("%s is not a supported wheel on this platform." % wheel.filename)
UnsupportedWheel: tensorflow-0.6.0-cp27-none-linux_x86_64.whl is not a supported wheel on this platform.
我接下来尝试的是从源代码构建TensorFlow。无济于事,我的所有尝试都以cannot execute binary file: Exec format error
消息结束,例如:
/usr/local/bin/bazel: line 86: /usr/local/lib/bazel/bin/bazel-real: cannot execute binary file: Exec format error
然后我尝试从源代码编译Bazel,这也导致类似的硬错误。
me@machine:~/bazel-0.1.5$ ./compile.sh
INFO: You can skip this first step by providing a path to the bazel binary as second argument:
INFO: ./compile.sh compile /path/to/bazel
Building Bazel from scratch.
Compiling Java stubs for protocol buffers...
third_party/protobuf/protoc-linux-x86_32.exe -Isrc/main/protobuf/ --java_out=/tmp/bazel.T9C83cNa/src src/main/protobuf/android_studio_ide_info.proto
scripts/bootstrap/buildenv.sh: line 63: third_party/protobuf/protoc-linux-x86_32.exe: cannot execute binary file: Exec format error
pv@sardonis:~/bazel-0.1.5$ ^C
然而,我找到了这个链接http://www.cnblogs.com/rodenpark/p/5007744.html,它解释了如何在Power8机器上从源代码构建Protobuf编译器。这工作并且在他的其他主题http://www.cnblogs.com/rodenpark/p/5007846.html中描述的修改之后,我设法至少开始编译过程。但是现在它崩溃了大量的错误,每个错误看起来都不那么严重,但是大量的错误让它看起来真的无望,我把它们贴在http://pastebin.com/KjkseaGx上以供参考。
所以......我的灵感已经不多了。如何使TensorFlow在Power8机器上运行?
答案 0 :(得分:3)
tf@ubuntu16:~$ git clone https://github.com/ibmsoe/bazel
tf@ubuntu16:~/bazel$ git checkout v0.2.0-ppc
tf@ubuntu16:~/bazel$ ./compile.sh
tf@ubuntu16:~$ git clone --recurse-submodules https://github.com/tensorflow/tensorflow
tf@ubuntu16:~/tensorflow$ git checkout v0.10.0rc0
tf@ubuntu16:~/tensorflow$ git commit -m"v0.10.0rc0"
tf@ubuntu16:~/tensorflow$ git cherry-pick ce70f6cf842a46296119337247c24d307e279fa0
tf@ubuntu16:~/tensorflow$ git cherry-pick f1acb3bd828a73b15670fc8019f06a5cd51bd564
tf@ubuntu16:~/tensorflow$ git cherry-pick 9b6215a691a2eebaadb8253bd0cf706f2309a0b8
tf@ubuntu16:~/tensorflow$ ./configure
tf@ubuntu16:~/tensorflow$ bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
在这里你会遇到一个错误,比如
错误:/home/tf/.cache/bazel/_bazel_tf/b2f766da603b0bed56d4c1d0b178456a/external/farmhash_archive/BUILD:5:1:执行genrule @farmhash_archive //:配置失败:bash失败:错误执行命令/ bin / bash - c ...(跳过剩余的1个参数):com.google.devtools.build.lib.shell.BadExitStatusException:进程退出,状态为1。 /home/tf/.cache/bazel/_bazel_tf/b2f766da603b0bed56d4c1d0b178456a/tensorflow/external/farmhash_archive/farmhash-34c13ddfab0e35422f4c3979f360635a8c050260 /home/tf/.cache/bazel/_bazel_tf/b2f766da603b0bed56d4c1d0b178456a/tensorflow /tmp/tmp.XdCPQefJyZ /home/tf/.cache/bazel/_bazel_tf/b2f766da603b0bed56d4c1d0b178456a/tensorflow/external/farmhash_archive/farmhash-34c13ddfab0e35422f4c3979f360635a8c050260 /home/tf/.cache/bazel/_bazel_tf/b2f766da603b0bed56d4c1d0b178456a/tensorflow
您必须编辑config.guess,如下所示插入ppc64le的节
tf@ubuntu16:~/.cache/bazel/_bazel_tf/b2f766da603b0bed56d4c1d0b178456a/external/farmhash_archive/farmhash-34c13ddfab0e35422f4c3979f360635a8c050260$ vi config.guess
*:BSD/OS:*:*)
echo ${UNAME_MACHINE}-unknown-bsdi${UNAME_RELEASE}
exit ;;
+ ppc64le:Linux:*:*)
+ echo powerpc64le-unknown-linux-gnu
+ exit ;;
*:FreeBSD:*:*)
case ${UNAME_MACHINE} in
tf@ubuntu16:~/tensorflow$ bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
tf@ubuntu16:~/tensorflow$ bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
tf@ubuntu16:~/tensorflow$ sudo pip install /tmp/tensorflow_pkg/tensorflow*.whl
tf@ubuntu16:~/tensorflow/bazel-bin/tensorflow/tools/pip_package/build_pip_package.runfi
tf@ubuntu16:~/tensorflow$ mkdir _python_build
tf@ubuntu16:~/tensorflow$ cd _python_build
tf@ubuntu16:~/tensorflow/_python_build$ ln -s ~/tensorflow/bazel-bin/tensorflow/tools/pip_package/build_pip_package.runfiles/tensorflow/* .
tf@ubuntu16:~/tensorflow/_python_build$ ln -s ~/tensorflow/tools/* .
tf@ubuntu16:~/tensorflow/_python_build$ python __init__.py develop
答案 1 :(得分:0)
使用miniconda:
安装miniconda:
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux--ppc64le.sh -O miniconda.sh
bash miniconda.sh
接受条件并允许将conda添加到PATH
rm miniconda.sh
echo export IBM_POWERAI_LICENSE_ACCEPT=yes >> ~/.bashrc
source ~/.bashrc
该添加项(基于终端)。将正确的频道添加为第一优先级
conda config --add default_channels https://repo.anaconda.com/pkgs/main
conda config --prepend channels https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/
创建环境(最好不要在基础上安装软件包)
conda create -n ai python=3.7
conda activate ai
conda install --strict-channel-priority tensorflow-gpu
有关IBM Power 8和Anaconda上的miniconda的更多信息:IBM Source和Anaconda Source