乘以scipy.lti传递函数

时间:2016-02-09 23:31:50

标签: python scipy

我有以下scipy.lti对象,它基本上是一个表示LTI系统拉普拉斯变换的对象:

G_s = lti([1], [1, 2])

如何将这种传递函数与另一种传递函数相乘,例如:

H_s = lti([2], [1, 2])

#I_s = G_s * H_s <---- How to multiply this properly?

我想我能做到

I_s = lti(np.polymul([1], [2]), np.polymul([1, 2], [1, 2]))

但如果我想这样做:

#I_s = H_s / (1 + H_s) <---- Does not work since H_s is an lti object

使用scipy有一种简单的方法吗?

2 个答案:

答案 0 :(得分:4)

有趣的是,Scipy似乎没有提供这种功能。另一种方法是将LTI系统转换为Sympy有理函数。 Sympy允许您轻松扩展和取消多项式:

from IPython.display import display
from scipy import signal
import sympy as sy

sy.init_printing()  # LaTeX like pretty printing for IPython


def lti_to_sympy(lsys, symplify=True):
    """ Convert Scipy's LTI instance to Sympy expression """
    s = sy.Symbol('s')
    G = sy.Poly(lsys.num, s) / sy.Poly(lsys.den, s)
    return sy.simplify(G) if symplify else G


def sympy_to_lti(xpr, s=sy.Symbol('s')):
    """ Convert Sympy transfer function polynomial to Scipy LTI """
    num, den = sy.simplify(xpr).as_numer_denom()  # expressions
    p_num_den = sy.poly(num, s), sy.poly(den, s)  # polynomials
    c_num_den = [sy.expand(p).all_coeffs() for p in p_num_den]  # coefficients
    l_num, l_den = [sy.lambdify((), c)() for c in c_num_den]  # convert to floats
    return signal.lti(l_num, l_den)


pG, pH, pGH, pIGH = sy.symbols("G, H, GH, IGH")  # only needed for displaying


# Sample systems:
lti_G = signal.lti([1], [1, 2])
lti_H = signal.lti([2], [1, 0, 3])

# convert to Sympy:
Gs, Hs = lti_to_sympy(lti_G), lti_to_sympy(lti_H)


print("Converted LTI expressions:")
display(sy.Eq(pG, Gs))
display(sy.Eq(pH, Hs))

print("Multiplying Systems:")
GHs = sy.simplify(Gs*Hs).expand()  # make sure polynomials are canceled and expanded
display(sy.Eq(pGH, GHs))


print("Closing the loop:")
IGHs = sy.simplify(GHs / (1+GHs)).expand()
display(sy.Eq(pIGH, IGHs))

print("Back to LTI:")
lti_IGH = sympy_to_lti(IGHs)
print(lti_IGH)

输出结果为:

result

答案 1 :(得分:4)

根据您对“easy”的定义,您应该考虑从lti派生自己的类,对传递函数实施必要的代数运算。这可能是最优雅的方法。

以下是我对这个主题的看法:

from __future__ import division

from scipy.signal.ltisys import TransferFunction as TransFun
from numpy import polymul,polyadd

class ltimul(TransFun):
    def __neg__(self):
        return ltimul(-self.num,self.den)

    def __floordiv__(self,other):
        # can't make sense of integer division right now
        return NotImplemented

    def __mul__(self,other):
        if type(other) in [int, float]:
            return ltimul(self.num*other,self.den)
        elif type(other) in [TransFun, ltimul]:
            numer = polymul(self.num,other.num)
            denom = polymul(self.den,other.den)
            return ltimul(numer,denom)

    def __truediv__(self,other):
        if type(other) in [int, float]:
            return ltimul(self.num,self.den*other)
        if type(other) in [TransFun, ltimul]:
            numer = polymul(self.num,other.den)
            denom = polymul(self.den,other.num)
            return ltimul(numer,denom)

    def __rtruediv__(self,other):
        if type(other) in [int, float]:
            return ltimul(other*self.den,self.num)
        if type(other) in [TransFun, ltimul]:
            numer = polymul(self.den,other.num)
            denom = polymul(self.num,other.den)
            return ltimul(numer,denom)

    def __add__(self,other):
        if type(other) in [int, float]:
            return ltimul(polyadd(self.num,self.den*other),self.den)
        if type(other) in [TransFun, type(self)]:
            numer = polyadd(polymul(self.num,other.den),polymul(self.den,other.num))
            denom = polymul(self.den,other.den)
            return ltimul(numer,denom)

    def __sub__(self,other):
        if type(other) in [int, float]:
            return ltimul(polyadd(self.num,-self.den*other),self.den)
        if type(other) in [TransFun, type(self)]:
            numer = polyadd(polymul(self.num,other.den),-polymul(self.den,other.num))
            denom = polymul(self.den,other.den)
            return ltimul(numer,denom)

    def __rsub__(self,other):
        if type(other) in [int, float]:
            return ltimul(polyadd(-self.num,self.den*other),self.den)
        if type(other) in [TransFun, type(self)]:
            numer = polyadd(polymul(other.num,self.den),-polymul(other.den,self.num))
            denom = polymul(self.den,other.den)
            return ltimul(numer,denom)

    # sheer laziness: symmetric behaviour for commutative operators
    __rmul__ = __mul__
    __radd__ = __add__

这定义了ltimul类,lti加上加法,乘法,除法,减法和否定;二进制的也定义为整数和浮点数作为合作伙伴。

我测试了它for the example of Dietrich

G_s = ltimul([1], [1, 2])
H_s = ltimul([2],[1, 0, 3])
print G_s*H_s
print G_s*H_s/(1+G_s*H_s)

虽然GH很好地等于

ltimul(
array([ 2.]),
array([ 1.,  2.,  3.,  6.])
)

GH /(1 + GH)的最终结果不那么漂亮了:

ltimul(
array([  2.,   4.,   6.,  12.]),
array([  1.,   4.,  10.,  26.,  37.,  42.,  48.])
)

由于我不太熟悉传递函数,我不确定它是否有可能产生与基于sympy的解决方案相同的结果,因为这个解决方案缺少一些简化。我发现已经lti出现意外行为是可疑的:lti([1,2],[1,2])不会简化其参数,即使我怀疑这个函数是常数1.所以我宁愿猜不出这个函数的正确性最终结果。

无论如何,主要消息本身就是继承,因此上述实现中的可能错误有望带来轻微的不便。我对类定义也很不熟悉,所以我可能没有遵循上面的最佳实践。

我最终在@ochurlaud pointed out之后重写了上述内容,我原来只适用于Python 2.原因是/操作由__div__ / __rdiv__实现Python 2(并且是模棱两可的"classical division")。然而,在Python 3中,/(真正的划分)和//(地板划分)之间存在区别,他们称__truediv____floordiv__(及其“正确” “对应物”,分别。上面代码行中的__future__导入即使在Python 2上也会触发正确的Python 3行为,因此上述代码适用于两个Python版本。由于floor(整数)除法对我们的类没有多大意义,我们明确表示它不能对//做任何事情(除非另一个操作数实现它)。

还可以轻松地分别为__iadd____idiv__等定义+=/=等就地操作。