在以下数据集中,我已经按自行车计数等于零的情况过滤了JSON间隔。 station_summary_id
代表一个时间间隔并按连续整数增加(在示例中,您看到64129与" 2014-10-01 07:00:00"相关联,然后64130与&#相关联34; 2014-10-01 07:10:00"等等。station_id
是电台的唯一ID。
我的目标是:通过station_id
找到最长的连续整数链 - 换句话说 - 找出每个站空的最长时间段。我知道这需要先按station_id
进行分组,然后计算station_summary_id
中最长的连续序列,但不确定如何为所有站点ID自动执行此操作。
> dim(data) [1] 307039 7 > head(data) station_id status available_bike_count created_at station_summary_id month year 13694 2 Active 0 2014-10-01 07:00:00 64129 10 2014 13702 10 Active 0 2014-10-01 07:00:00 64129 10 2014 13706 14 Active 0 2014-10-01 07:00:00 64129 10 2014 13710 18 Active 0 2014-10-01 07:00:00 64129 10 2014 13713 21 Active 0 2014-10-01 07:00:00 64129 10 2014 13728 36 Active 0 2014-10-01 07:00:00 64129 10 2014
可重复的例子:
> dput(dat) structure(list(station_id = c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), status = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "Active", class = "factor"), available_bike_count = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), station_summary_id = c(64129L, 64130L, 64131L, 64132L, 64133L, 64134L, 64136L, 64138L, 64139L, 64140L, 64141L, 64142L, 64143L, 64144L, 64145L, 64146L, 64147L, 64148L, 64149L, 64150L, 64152L, 64161L, 64162L, 64170L, 64273L, 64322L, 64324L, 64341L, 64884L, 64886L, 64896L, 64897L, 64898L, 64899L, 64900L, 64901L, 64902L, 64903L, 64904L, 64905L, 64906L, 64907L, 64908L, 64909L, 64910L, 64911L, 64912L, 64913L, 64917L, 64918L, 65214L, 65219L, 66314L, 66439L, 66450L, 66583L, 66587L, 66589L, 66600L, 66872L, 66880L, 67037L, 67048L, 82854L, 82855L, 82856L, 82857L, 82858L, 82859L, 82860L, 82861L, 82862L, 82863L, 82867L, 82868L), month = c(10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L), year = c(2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L)), .Names = c("station_id", "status", "available_bike_count", "station_summary_id", "month", "year"), row.names = c(NA, -75L), class = "data.frame")
答案 0 :(得分:2)
有关运行长度编码的可能用途,请参阅?rle
。
使用您的新数据:
> max( rle( diff(dat$station_summary_id) )$lengths )
[1] 12
在修订后的示例中有多个station_id,我发现aggregate
工作得相当好:
aggregate( dat$station_summary_id, dat['station_id'], FUN= function(d) max( rle( diff(d) )$lengths ) )
#---------
station_id x
1 2 12
2 3 17
3 4 9
这也成功使用了data.table语法:
dat <- setDT(dat)
dat[, max( rle( diff(station_summary_id) )$lengths ) , by='station_id']
#-----
station_id V1
1: 2 12
2: 3 17
3: 4 9
答案 1 :(得分:1)
您可以使用dplyr
,data.table
或base R
按电台ID查找最长持续时间。请参阅@ 42在电话中心提及的函数rle
:
#dplyr
library(dplyr)
data %>% group_by(station_id) %>%
summarise(with(rle(station_summary_id), values[which.max(lengths)]))
#data.table
library(data.table)
setDT(data)[,list(with(rle(station_summary_id),
values[which.max(lengths)])),by=station_id]
#base R
lapply(split(data$station_summary_id, data$station_id),
function(x) with(rle(x), values[which.max(lengths)]))
修改强>
使用新数据:
dt[,with(rle(diff(station_summary_id) > 1), max(lengths[!values])), by=station_id]