我确定这个问题是Googleable,但我不知道要使用哪些关键字。我对一个特定的案例感到好奇,但也对如何做到这一点感到好奇。假设我有一个RGB图像作为形状(width, height, 3)
的数组,我想找到红色通道大于100的所有像素。我觉得image > [100, 0, 0]
应该给我一个索引数组(如果我正在比较标量和使用灰度图像,但是这会将每个元素与列表进行比较。我如何比较每个"元素"的前两个维度?是最后一个维度?
答案 0 :(得分:2)
要仅检测红色通道,您可以执行以下操作 -
np.argwhere(image[:,:,0] > threshold)
说明:
red-channel
与threshold
进行比较,为我们提供一个与没有第三轴(颜色通道)的输入图像形状相同的布尔数组。np.argwhere
获取成功匹配的索引。 如果您想查看是否有任何通道高于某个阈值,请使用.any(-1)
(任何满足最后一个轴/颜色通道条件的元素)。
np.argwhere((image > threshold).any(-1))
示例运行
输入图片:
In [76]: image
Out[76]:
array([[[118, 94, 109],
[ 36, 122, 6],
[ 85, 91, 58],
[ 30, 2, 23]],
[[ 32, 47, 50],
[ 1, 105, 141],
[ 91, 120, 58],
[129, 127, 111]]], dtype=uint8)
In [77]: threshold
Out[77]: 100
案例#1:仅限红色通道
In [69]: np.argwhere(image[:,:,0] > threshold)
Out[69]:
array([[0, 0],
[1, 3]])
In [70]: image[0,0]
Out[70]: array([118, 94, 109], dtype=uint8)
In [71]: image[1,3]
Out[71]: array([129, 127, 111], dtype=uint8)
案例#2:任意频道
In [72]: np.argwhere((image > threshold).any(-1))
Out[72]:
array([[0, 0],
[0, 1],
[1, 1],
[1, 2],
[1, 3]])
In [73]: image[0,1]
Out[73]: array([ 36, 122, 6], dtype=uint8)
In [74]: image[1,1]
Out[74]: array([ 1, 105, 141], dtype=uint8)
In [75]: image[1,2]
Out[75]: array([ 91, 120, 58], dtype=uint8)
np.any
np.einsum
的更快替代方案
np.einsum
可能会被欺骗以执行np.any
的工作,因为事实证明它有点快。
因此, boolean_arr.any(-1)
等同于 np.einsum('ijk->ij',boolean_arr)
。
以下是各种数据集的相关运行时 -
In [105]: image = np.random.randint(0,255,(30,30,3)).astype('uint8')
...: %timeit np.argwhere((image > threshold).any(-1))
...: %timeit np.argwhere(np.einsum('ijk->ij',image>threshold))
...: out1 = np.argwhere((image > threshold).any(-1))
...: out2 = np.argwhere(np.einsum('ijk->ij',image>threshold))
...: print np.allclose(out1,out2)
...:
10000 loops, best of 3: 79.2 µs per loop
10000 loops, best of 3: 56.5 µs per loop
True
In [106]: image = np.random.randint(0,255,(300,300,3)).astype('uint8')
...: %timeit np.argwhere((image > threshold).any(-1))
...: %timeit np.argwhere(np.einsum('ijk->ij',image>threshold))
...: out1 = np.argwhere((image > threshold).any(-1))
...: out2 = np.argwhere(np.einsum('ijk->ij',image>threshold))
...: print np.allclose(out1,out2)
...:
100 loops, best of 3: 5.47 ms per loop
100 loops, best of 3: 3.69 ms per loop
True
In [107]: image = np.random.randint(0,255,(3000,3000,3)).astype('uint8')
...: %timeit np.argwhere((image > threshold).any(-1))
...: %timeit np.argwhere(np.einsum('ijk->ij',image>threshold))
...: out1 = np.argwhere((image > threshold).any(-1))
...: out2 = np.argwhere(np.einsum('ijk->ij',image>threshold))
...: print np.allclose(out1,out2)
...:
1 loops, best of 3: 833 ms per loop
1 loops, best of 3: 640 ms per loop
True