我有两个来自WRF运行的netcdf文件,一个包含每小时数据,另一个较小的文件包含坐标(XLAT和XLONG)。我试图根据某些坐标检索数据的子集。
其中一个变量的例子是温度' T2'其尺寸(1,1015,1359)分别为(time,south_north,west_east)。
XLAT和XLONG具有相同的尺寸(1,1015,1359)。
有一个相同的问题(请参阅netcdf4 extract for subset of lat lon),因为我的纬度/长度尺寸有点不同,脚本对我不起作用,我还没有找到原因。我试图将坐标更改为1D数组,因此它与上一个问题类似,但脚本不起作用,我得到索引错误。
如果有人能帮助我,那会很棒!在此先感谢:)
import numpy as np
from netCDF4 import Dataset
import matplotlib.pyplot as plt
lons = b.variables['XLONG'][:]
lats = b.variables['XLAT'][:]
lons2d =lons.reshape((1015,1359))
lons1d = lons2d.reshape((1379385))
lats2d =lats.reshape((1015,1359))
lats1d = lats2d.reshape((1379385))
lat_bnds, lon_bnds = [49,53], [-125,-115]
lat_inds = np.where((lats1d > lat_bnds[0]) & (lats1d < lat_bnds[1]))
lon_inds = np.where((lons1d > lon_bnds[0]) & (lons1d < lon_bnds[1]))
T_subset = a.variables['T2'][:,lat_inds,lon_inds]
但是我收到以下错误:
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-2-0f8890d3b1c5> in <module>()
25 lon_inds = np.where((lons1d > lon_bnds[0]) & (lons1d < lon_bnds[1]))
26
---> 27 T_subset = a.variables['T2'][:,lat_inds,lon_inds]
28
29
netCDF4/_netCDF4.pyx in netCDF4._netCDF4.Variable.__getitem__(netCDF4/_netCDF4.c:35672)()
/Users/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/netCDF4/utils.pyc in _StartCountStride(elem, shape, dimensions, grp, datashape, put)
197 # Raise error if multidimensional indexing is used.
198 if ea.ndim > 1:
--> 199 raise IndexError("Index cannot be multidimensional")
200 # set unlim to True if dimension is unlimited and put==True
201 # (called from __setitem__)
IndexError: Index cannot be multidimensional
答案 0 :(得分:1)
我不确定为什么它不能正常工作,但我认为这可以做你想要的并且更清洁:
import numpy as np
from netCDF4 import Dataset
import matplotlib.pyplot as plt
# By indexing at 0 along first dimension, we eliminate the time
# dimension, which only had size 0 anyway.
lons = b.variables['XLONG'][0]
lats = b.variables['XLAT'][0]
temp = a.variables['T2'][0]
lat_bnds, lon_bnds = [49,53], [-125,-115]
# Just AND together all of them and make a big mask
subset = ((lats > lat_bnds[0]) & (lats < lat_bnds[1]) &
(lons > lon_bnds[0]) & (lons < lon_bnds[1]))
# Apply mask--should apply to trailing dimensions...I think
T_subset = temp[subset]
答案 1 :(得分:0)
我发现lat_inds
存在明显问题,因为它具有最大形状1015*1359
,但您尝试将其用作纬度索引,其大小为1015
。因此IMO您应首先找到lat_inds
和lon_inds
的类似值,这些值满足lon和lat限制,然后将此数组用于展平数据。类似的东西:
uni_ind=numpy.intersect1d(lat_inds,lon_inds)
T_subset=np.ravel(a.variables['T2'])[uni_ind]
将数组转换回2D可能包含更多问题,因为我假设您的原始数据不在圆柱坐标中,因此结果子集可能不是矩形。 此代码未经过测试,如果您共享原始数据文件,我也可以这样做。
编辑: 为了正确绘图,使用掩蔽更容易,这个例子应该足够信息。
import numpy as np
from netCDF4 import Dataset
import matplotlib.pyplot as plt
b = Dataset('wrfout_conus_constants.nc')
a = Dataset('wrf2d_d01_2010-01-11_000000')
## Data coords
xlong = b.variables['XLONG'][0]
xlat = b.variables['XLAT'][0]
## Data var
temp = a.variables['T2'][0]
## Data bounds
longmax, longmin = -115, -125
latmax, latmin = 53, 49
## Mask coordinates according to bounds
latmask=np.ma.masked_where(xlat<latmin,xlat).mask+np.ma.masked_where(xlat>latmax,xlat).mask
lonmask=np.ma.masked_where(xlong<longmin,xlong).mask+np.ma.masked_where(xlong>longmax,xlat).mask
totmask = lonmask + latmask
## Show mask compared to full domain
plt.pcolormesh(totmask)
## Apply mask to data
temp_masked = np.ma.masked_where(totmask,temp)
## plot masked data
fig=plt.figure()
plt.contourf(temp_masked)
## plot full domain
fig=plt.figure()
plt.contourf(temp)
plt.show()