我有一个时间序列(具有索引类型chron的动物园),我需要在一个新的动物园对象中分别每天计算cummax(mydata)-mydata
。
我试过这个:
aggregate(mydata, as.date, cummax)
但aggregate
只能为每个子集而不是向量生成单个标量结果。我读过可能会tapply
,lapply
,plyr
,cut
或rollapply
可以做到这一点,但我无法让它们发挥作用。
答案 0 :(得分:1)
zoo
有cummax
方法,因此您在获取zoo
结果时不会遇到任何问题。也许你让它变得比它更难......这就是你想要的吗?
> set.seed(21)
> z <- zoo(runif(10),as.chron(Sys.Date()-10:1))
> merge(z,cummax=cummax(z),diff=cummax(z)-z)
z cummax diff
08/09/10 0.66754012 0.6675401 0.0000000
08/10/10 0.93521022 0.9352102 0.0000000
08/11/10 0.05818433 0.9352102 0.8770259
08/12/10 0.61861583 0.9352102 0.3165944
08/13/10 0.17491846 0.9352102 0.7602918
08/14/10 0.03767539 0.9352102 0.8975348
08/15/10 0.52531317 0.9352102 0.4098971
08/16/10 0.28218425 0.9352102 0.6530260
08/17/10 0.49904520 0.9352102 0.4361650
08/18/10 0.63382510 0.9352102 0.3013851
由于这很简单,我猜你的时间序列是盘中频率。如果是这种情况,那么代码就会更复杂,但这应该可以解决问题:
> require(xts) # for the endpoints() function
> set.seed(21)
> z <- zoo(runif(10),as.chron(Sys.Date()-seq(0.5,3,length.out=10)))
> ep <- endpoints(z,"days")
> Z <- lapply(1:(length(ep)-1), function(x) cummax(z[(ep[x]+1):ep[x+1]]))
> Z <- do.call(rbind, Z)
> merge(z,Z,Z-z)
z Z Z - z
(08/16/10 00:00:00) 0.8493961 0.8493961 0.0000000
(08/16/10 06:40:00) 0.9860037 0.9860037 0.0000000
(08/16/10 13:20:00) 0.1721917 0.9860037 0.8138120
(08/16/10 20:00:00) 0.1018046 0.9860037 0.8841991
(08/17/10 02:40:00) 0.9186834 0.9186834 0.0000000
(08/17/10 09:20:00) 0.9596138 0.9596138 0.0000000
(08/17/10 16:00:00) 0.1844608 0.9596138 0.7751531
(08/17/10 22:40:00) 0.6992523 0.9596138 0.2603615
(08/18/10 05:20:00) 0.2524456 0.2524456 0.0000000
(08/18/10 12:00:00) 0.7861149 0.7861149 0.0000000
答案 1 :(得分:0)
粗略方法:制作一个矩阵,其行或列对应于要进行计算的块,然后使用apply
x <- rnorm(240) # imagine this to be 10 days of hourly data
xm <- matrix(x, ncol=24, byrow=TRUE)
daily.avg <- apply(xm, 1, mean)
plot(x)
lines(12 + seq(1,240,24), daily.avg)
答案 2 :(得分:0)
可以使用ave在一行中完成:
> library(zoo)
> set.seed(123)
> z <- zoo(rnorm(10), chron(0:9/5))
>
> ave(coredata(z), as.Date(time(z)), FUN = cummax) - z
(01/01/70 00:00:00) (01/01/70 04:48:00) (01/01/70 09:36:00) (01/01/70 14:24:00) (01/01/70 19:12:00) (01/02/70 00:00:00) (01/02/70 04:48:00)
0.000000 0.000000 0.000000 1.488200 1.429421 0.000000 1.254149
(01/02/70 09:36:00) (01/02/70 14:24:00) (01/02/70 19:12:00)
2.980126 2.401918 2.160727