在bnlearn包中增长收缩给出相同的预测

时间:2016-02-07 18:50:07

标签: r minimax bayesian-networks hill-climbing

我在R中使用bnlearn包来预测某些结果。但是,对于我的数据集中的所有行,我得到相同的预测。

培训

            <dialog id="login" style="border-color: blue; border: 1px solid">
                <form name="reg">
                First Name : <input type="text" name="fname" required>
                Last Name: <input type="text" name="lname" required>
                Email <input type="email" name="mail" required>
                Password: <input type="password" name="pass" required>
                Confirm Password : <input type="password" name="confpass" required>
                <button type="submit"></button>
                <button type="reset"></button>
                </form>
            </dialog>

        <script>
            function registration(){

                var dailog = document.getElementById('login');
                dailog.open();
            }

        </script>

预测

buildModel <- function()
{
#building bn model

#for Hill Climbing, works fine
#hcbn = hc(bndf, blacklist = blacklist, score='bic',restart = 0)

#for Max Min Hill Climbing, also works fine, get different predictions for rows
#hcbn = mmhc(bndf, blacklist = blacklist, optimized=TRUE)

#for Grow Shrink, get the same predictions every row
hcbn = cextend(gs(bndf, blacklist = blacklist, optimized=TRUE))

hcbn.fitted = bn.fit(hcbn, bndf, method='bayes')
hcbn.grain <<- as.grain(hcbn.fitted)
}

HC和MMHC的输出(不同输入的不同预测)

hcpredthirtyday1[[i]] <- foreach (j = start:min(end, nrow(predictdf)), .combine=rbind) %dopar%
    {
                predict(hcbn.grain, response = c("myresponse"), newdata = predictdf[j, ], predictors = myypredictors, type = "distribution")$pred$myresponse;
    }

GS的输出(每行的预测相同)

              0          1
 [1,] 0.8617731 0.13822686
 [2,] 0.8617731 0.13822686
 [3,] 0.8617731 0.13822686
 [4,] 0.8617731 0.13822686
 [5,] 0.8617731 0.13822686
 [6,] 0.8617731 0.13822686
 [7,] 0.8617731 0.13822686
 [8,] 0.8617731 0.13822686
 [9,] 0.8617731 0.13822686
[10,] 0.9077158 0.09228421

0 个答案:

没有答案