我正在尝试使用
构建一个集群机制如下:
在bigquery中创建基于用户级别的要素表
示例:要素表的外观如何
userid |x1 |x2 |x3 |x4 |x5 |x6 |x7 |x8 |x9 |x10
00013 |0.01 | 0 |0 |0 |0 |0 |0 |0.06 |0.09 | 0.001
#!/usr/bin/python
"""BigQuery I/O PySpark example."""
import json
import pprint
import subprocess
import pyspark
import numpy as np
from pyspark.ml.clustering import KMeans
from pyspark import SparkContext
from pyspark.ml import Pipeline
from pyspark.sql import SQLContext
from pyspark.mllib.linalg import Vectors, _convert_to_vector
from pyspark.sql.types import Row
from pyspark.mllib.common import callMLlibFunc, callJavaFunc, _py2java, _java2py
sc = pyspark.SparkContext()
# Use the Google Cloud Storage bucket for temporary BigQuery export data used by the InputFormat.
# This assumes the Google Cloud Storage connector for Hadoop is configured.
bucket = sc._jsc.hadoopConfiguration().get('fs.gs.system.bucket')
project = sc._jsc.hadoopConfiguration().get('fs.gs.project.id')
input_directory ='gs://{}/hadoop/tmp/bigquery/pyspark_input'.format(bucket)
conf = {# Input Parameters
'mapred.bq.project.id': project,
'mapred.bq.gcs.bucket': bucket,
'mapred.bq.temp.gcs.path': input_directory,
'mapred.bq.input.project.id': 'my-project',
'mapred.bq.input.dataset.id': 'tempData',
'mapred.bq.input.table.id': 'userFeatureInBQ'}
# Load data in from BigQuery.
table_data = sc.newAPIHadoopRDD(
'com.google.cloud.hadoop.io.bigquery.JsonTextBigQueryInputFormat',
'org.apache.hadoop.io.LongWritable',
'com.google.gson.JsonObject',conf=conf)
# Tranform the userid-Feature table into feature_data RDD
feature_data = (
table_data
.map(lambda (_, record): json.loads(record))
.map(lambda x:(x['x0'],x['x1'],x['x2'],x['x3'],x['x4'],
x['x5'],x['x6'],x['x7'],x['x8'],
x['x9'],x['x10'])))
# Function to convert each line in RDD into an array, return the vector
def parseVector(values):
array = np.array([float(v) for v in values])
return _convert_to_vector(array)
# Convert the RDD into a row wise RDD
data = feature_data.map(parseVector)
row_rdd = data.map(lambda x: Row(x))
sqlContext = SQLContext(sc)
# cache the RDD to improve performance
row_rdd.cache()
# Create a Dataframe
df = sqlContext.createDataFrame(row_rdd, ["features"])
# cache the Dataframe
df.cache()
这是我打印到控制台的Schema和head():
|-- features: vector (nullable = true)
[Row(features=DenseVector([0.01,0,0,0,0,0,0,0.06,0.09,0.001]))]
#Define the paramMap & model
paramMap = ({'k':3,'initMode':'kmeans||'},{'k':3,'initMode':'random'},
{'k':4,'initMode':'kmeans||'},{'k':4,'initMode':'random'},
{'k':5,'initMode':'kmeans||'},{'k':5,'initMode':'random'},
{'k':6,'initMode':'kmeans||'},{'k':6,'initMode':'random'},
{'k':7,'initMode':'kmeans||'},{'k':7,'initMode':'random'},
{'k':8,'initMode':'kmeans||'},{'k':8,'initMode':'random'},
{'k':9,'initMode':'kmeans||'},{'k':9,'initMode':'random'},
{'k':10,'initMode':'kmeans||'},{'k':10,'initMode':'random'})
km = KMeans()
# Create a Pipeline with estimator stage
pipeline = Pipeline(stages=[km])
# Call & fit the pipeline with the paramMap
models = pipeline.fit(df, paramMap)`
print models
我收到以下输出并带有警告
7:03:24 WARN org.apache.spark.mllib.clustering.KMeans: The input data was not directly cached, which may hurt performance if its parent RDDs are also uncached.
[PipelineModel_443dbf939b7bd3bf7bfc, PipelineModel_4b64bb761f4efe51da50, PipelineModel_4f858411ac19beacc1a4, PipelineModel_4f58b894f1d14d79b936, PipelineModel_4b8194f7a5e6be6eaf33, PipelineModel_4fc5b6370bff1b4d7dba, PipelineModel_43e0a196f16cfd3dae57, PipelineModel_47318a54000b6826b20e, PipelineModel_411bbe1c32db6bf0a92b, PipelineModel_421ea1364d8c4c9968c8, PipelineModel_4acf9cdbfda184b00328, PipelineModel_42d1a0c61c5e45cdb3cd, PipelineModel_4f0db3c394bcc2bb9352, PipelineModel_441697f2748328de251c, PipelineModel_4a64ae517d270a1e0d5a, PipelineModel_4372bc8db92b184c05b0]
#Print the cluster centers:
for model in models:
print vars(model)
print model.stages[0].clusterCenters()
print model.extractParamMap()
输出:
[array([7.64676638e-07, 3.58531391e-01, 1.68879698e-03, 0.00000000e+00, 1.53477043e-02, 1.25822915e-02, 0.00000000e+00, 6.93060772e-07, 1.41766847e-03, 1.60941306e-02], array([2.36494105e-06, 1.87719732e-02, 3.73829379e-03, 0.00000000e+00, 4.20724542e-02, 2.28675684e-02, 0.00000000e+00, 5.45002249e-06, 1.17331153e-02, 1.24364600e-02])
这里是问题列表,需要帮助:
#computeError
def computeCost(model, rdd):`
"""Return the K-means cost (sum of squared distances of
points to their nearest center) for this model on the given data."""
cost = callMLlibFunc("computeCostKmeansModel",
rdd.map(_convert_to_vector),
[_convert_to_vector(c) for c in model.clusterCenters()])
return cost
cost= np.zeros(len(paramMap))
for i in range(len(paramMap)):
cost[i] = cost[i] + computeCost(model[i].stages[0], feature_data)
print cost
这会在循环结束时打印出以下内容:
[ 634035.00294687 634035.00294687 634035.00294687 634035.00294687
634035.00294687 634035.00294687 634035.00294687 634035.00294687
634035.00294687 634035.00294687 634035.00294687 634035.00294687
634035.00294687 634035.00294687 634035.00294687 634035.00294687]
非常感谢任何帮助/指导!谢谢!
答案 0 :(得分:5)
您的参数未正确定义。它应该从特定参数映射到值,而不是从任意名称映射。您得到k
等于2,因为您传递的参数未被使用,并且每个模型使用完全相同的默认参数。
让我们从示例数据开始:
import numpy as np
from pyspark.mllib.linalg import Vector
df = (sc.textFile("data/mllib/kmeans_data.txt")
.map(lambda s: Vectors.dense(np.fromstring(s, dtype=np.float64, sep=" ")))
.zipWithIndex()
.toDF(["features", "id"]))
和Pipeline
:
from pyspark.ml.clustering import KMeans
from pyspark.ml import Pipeline
km = KMeans()
pipeline = Pipeline(stages=[km])
如上所述,参数图应使用特定参数作为键。例如:
params = [
{km.k: 2, km.initMode: "k-means||"},
{km.k: 3, km.initMode: "k-means||"},
{km.k: 4, km.initMode: "k-means||"}
]
models = pipeline.fit(df, params=params)
assert [len(m.stages[0].clusterCenters()) for m in models] == [2, 3, 4]
注意:
initMode
是k-means||
而不是kmeans||
。DataFrame
,而是转换为RDD。