如何使用emgu cv在图像中找到任意旋转角度的黑色方块

时间:2016-02-07 07:39:00

标签: c# .net opencv emgucv

我需要在测试表中找到三个黑色方块的坐标。我从网站emgu.com上获取了示例代码并略微更改了它,但他找不到我需要的内容。图像的大小为A4,测试形式的大小为A5。我希望你的帮助:) 我差点忘了,正方形的大小是30像素。

private void DetectRectangles(Image<Gray, byte> img)
    {
                        var size = new Size(3, 3);
            CvInvoke.GaussianBlur(img, img, size, 0);
            CvInvoke.AdaptiveThreshold(img, img, 255, AdaptiveThresholdType.MeanC, ThresholdType.Binary, 75, 100);
            UMat cannyEdges = new UMat();
            CvInvoke.Canny(img, cannyEdges, 180, 120);
            var boxList = new List<RotatedRect>();

            using (VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint())
            {
                CvInvoke.FindContours(cannyEdges, contours, null, RetrType.Tree, ChainApproxMethod.ChainApproxSimple);
                int count = contours.Size;
                for (int i = 0; i < count; i++)
                {
                    using (VectorOfPoint contour = contours[i])
                    using (VectorOfPoint approxContour = new VectorOfPoint())
                    {
                        CvInvoke.ApproxPolyDP(contour, approxContour, CvInvoke.ArcLength(contour, true) * 0.05, true);
                        var area = CvInvoke.ContourArea(approxContour);
                        if (area > 800 && area < 1000)
                        {
                            if (approxContour.Size == 4)
                            {
                                bool isRectangle = true;
                                Point[] pts = approxContour.ToArray();
                                LineSegment2D[] edges = PointCollection.PolyLine(pts, true);

                                for (int j = 0; j < edges.Length; j++)
                                {
                                    double angle = Math.Abs(edges[(j + 1) % edges.Length].GetExteriorAngleDegree(edges[j]));
                                    if (angle < 75 || angle > 94)
                                    {
                                        isRectangle = false;
                                        break;
                                    }
                                }

                                if (isRectangle)
                                    boxList.Add(CvInvoke.MinAreaRect(approxContour));
                            }
                        }
                    }
                }
            }
            var resultimg = new Image<Bgr,byte>(img.Width, img.Height);
            CvInvoke.CvtColor(img, resultimg, ColorConversion.Gray2Bgr);
            foreach (RotatedRect box in boxList)
            {
                CvInvoke.Polylines(resultimg, Array.ConvertAll(box.GetVertices(), Point.Round), true, new Bgr(Color.Red).MCvScalar, 2);
            }
            imageBox1.Image = resultimg;
            resultimg.Save("result_img.jpg");       }

输入图片:

1 个答案:

答案 0 :(得分:3)

由于您正在寻找一个非常特定的对象,您可以使用以下算法:

  1. 反转图像,使前景变为白色,背景变黑。
  2. 查找连接组件的轮廓
  3. 对于每个轮廓

    一个。计算最小区域矩形box

    湾计算boxbarea

    的区域

    ℃。计算轮廓的面积:carea

    d。应用一些约束以确保您的轮廓是您正在寻找的正方形

  4. 步骤3d的约束是:

    1. 比率barea / carea应该高(假设高于0.9),这意味着轮廓属于几乎矩形blob。

    2. box的宽高比应该几乎 1,这意味着box基本上是一个正方形

    3. 广场的大小应该接近30,以拒绝图片中其他较小或较大的方块。

    4. 我运行的结果是:

      enter image description here

      这是代码。对不起,它是C ++,但由于它是所有OpenCV函数调用,您应该能够轻松地将它移植到C#。至少,您可以将其用作参考:

      #include <opencv2/opencv.hpp>
      #include <iostream>
      using namespace cv;
      using namespace std;
      
      int main()
      {
          // Load image
          Mat1b img = imread("path_to_image", IMREAD_GRAYSCALE);
      
          // Create the output image
          Mat3b out;
          cvtColor(img, out, COLOR_GRAY2BGR);
      
          // Create debug image
          Mat3b dbg = out.clone();
      
          // Binarize (to remove jpeg arifacts)
          img = img > 200;
      
          // Invert image
          img = ~img;
      
          // Find connected components
          vector<vector<Point>> contours;
          findContours(img.clone(), contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
      
          vector<RotatedRect> squares;
      
          // For each contour
          for (int i = 0; i < contours.size(); ++i)
          {
              // Find rotated bounding box
              RotatedRect box = minAreaRect(contours[i]);
      
              // Compute the area of the contour
              double carea = contourArea(contours[i]);
              // Compute the area of the box
              double barea = box.size.area();
      
              // Constraint #1
              if ((carea / barea) > 0.9)
              {
                  drawContours(dbg, contours, i, Scalar(0, 0, 255), 7);
      
                  // Constraint #2
                  if (min(box.size.height, box.size.width) / max(box.size.height, box.size.width) > 0.95)
                  {
                      drawContours(dbg, contours, i, Scalar(255, 0, 0), 5);
      
                      // Constraint #3
                      if (box.size.width > 25 && box.size.width < 35)
                      {
                          drawContours(dbg, contours, i, Scalar(0, 255, 0), 3);
      
                          // Found the square!
                          squares.push_back(box);
                      }
                  }
              }
      
              // Draw output
              for (int i = 0; i < squares.size(); ++i)
              {
                  Point2f pts[4];
                  squares[i].points(pts);
      
                  for (int j = 0; j < 4; ++j)
                  {
                      line(out, pts[j], pts[(j + 1) % 4], Scalar(0,255,0), 5);
                  }
              }
          }
      
          // Resize for better visualization
          resize(out, out, Size(), 0.25, 0.25);
          resize(dbg, dbg, Size(), 0.25, 0.25);
      
          // Show images
          imshow("Steps", dbg);
          imshow("Result", out);
          waitKey();
      
          return 0;
      }