我尝试从Kafka加载数据,这是成功但我无法转换为spark RDD,
val kafkaParams = Map("metadata.broker.list" -> "IP:6667,IP:6667")
val offsetRanges = Array(
OffsetRange("first_topic", 0,1,1000)
)
val ssc = new StreamingContext(new SparkConf, Seconds(60))
val stream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
现在如何读取此流对象???我的意思是将其转换为Spark Dataframe并执行一些计算
我尝试过转换为dataframe
stream.foreachRDD { rdd =>
println("Hello")
import sqlContext.implicits._
val dataFrame = rdd.map {case (key, value) => Row(key, value)}.toDf()
}
但是toDf没有工作错误:值toDf不是org.apache.spark.rdd.RDD的成员[org.apache.spark.sql.Row]
答案 0 :(得分:1)
它已经过时了,但我认为您在从行创建df时忘记添加架构:
val df = sc.parallelize(List(1,2,3)).toDF("a")
val someRDD = df.rdd
val newDF = spark.createDataFrame(someRDD, df.schema)
(在spark-shell 2.2.0中测试)
答案 1 :(得分:1)
val kafkaParams = Map("metadata.broker.list" -> "IP:6667,IP:6667")
val offsetRanges = Array(
OffsetRange("first_topic", 0,1,1000)
)
val ssc = new StreamingContext(new SparkConf, Seconds(60))
val stream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
val lines = stream.map(_.value)
val words = lines.flatMap(_.split(" ")).print() //def createDataFrame(words: RDD[Row], Schema: StructType)
// Start your computation then
ssc.start()
ssc.awaitTermination()