我一直试图突破matplotlib补丁的界限,并指示它在中点画一个带有方向箭头的圆角FancyArrowPatch
。这在我试图创建的网络表示中非常有用。
我使用python的编码时间还不到两位数,所以我不能说我对matplotlib的patches.py有一个清晰的认识,但我已经将解决方案缩小到两种可能的策略:
arrowstyle
类,进一步要求修改_get_arrow_wedge()
函数以包含中点坐标。这可能超出了我现在的可能性,或者arrowstyle
。当然,到目前为止,我选择了懒惰的方式。我做了一些早期的实验,使用FancyArrowPatch
和get_path()
提取弯曲的get_path_in_displaycoord()
的中点坐标,但我似乎无法预测精确的中点坐标。一些帮助将非常感激。
到目前为止我的小提琴:
import matplotlib.pyplot as plt
from matplotlib.patches import FancyArrowPatch
n1 = (2,3)
n2 = (4,6)
# Try with multiple arc radius sizes, draw a separate plot each time
for rad in range(20):
#setup figure
figure = plt.figure()
ax = plt.subplot(111)
plt.annotate('rad:' + str(rad/25.),xy=(2,5))
# create rounded fancyarrowpatch
t = FancyArrowPatch(posA=n1,posB=n2,
connectionstyle='arc3,rad=%s'%float(rad/25.),
arrowstyle='->',
shrinkA=0,
shrinkB=0,
mutation_scale=0.5)
# extract vertices from get_path: points P#
path = t.get_path().vertices.tolist()
lab, px, py = ['P{0}'.format(i) for i in range(len(path))], [u[0] for u in path],[u[1] for u in path]
for i in range(len(path)):
plt.annotate(lab[i],xy=(px[i],py[i]))
# extract vertices from get_path_in_displaycoord (but they are useless) : points G#
newpath = t.get_path_in_displaycoord()
a,b = newpath[0][0].vertices.tolist(), newpath[0][1].vertices.tolist()
a.extend(b)
glab, gx, gy = ['G{0}'.format(i) for i in range(len(a))], [u[0] for u in a],[u[1] for u in a]
for i in range(len(a)):
plt.annotate(glab[i],xy=(gx[i],gy[i]))
#point A: start
x1, y1 = n1
plt.annotate('A',xy=(x1,y1))
#point B:end
x2, y2 = n2
plt.annotate('B',xy=(x2,y2))
#point M: the 'midpoint' as defined by class Arc3, specifically its connect() function
x12, y12 = (x1 + x2) / 2., (y1 + y2) / 2.
dx, dy = x2 - x1, y2 - y1
cx, cy = x12 + (rad/100.) * dy, y12 - (rad/100.) * dx
plt.annotate('M',xy=(cx,cy))
#point O : midpoint between M and P1, the second vertex from get_path
mx,my = (cx + px[1])/2., (cy + py[1])/2.
plt.annotate('O',xy=(mx,my))
ax.add_patch(t)
plt.scatter([x1,cx,x2,mx,gx].extend(px),[y1,cy,y2,my,gy].extend(py))
plt.show()
编辑:接受@cphlewis建议:我试图重建Bezier曲线:
def bezcurv(start,control,end,tau):
ans = []
for t in tau:
B = [(1-t)**2 * start[i] + 2*(1-t)*t*end[i] + (t**2)*control[i] for i in range(len(start))]
ans.append(tuple(B))
return ans
因此我将生成的行添加到原始图中:
tau = [time/100. for time in range(101)]
bezsim = bezcurv(n1,n2,(cx,cy),tau)
simx,simy = [b[0] for b in bezsim], [b[1] for b in bezsim]
答案 0 :(得分:1)
经过多次努力,我确信自己要解决这个问题,我不得不离开FancyArrowPatch
套件并从头开始创造一些东西。这是一个有效的解决方案,它远非满足任何完美主义精神,让我满意:
import matplotlib.pyplot as plt
import numpy as np
from numpy.random import seed, randint
# Build function that connects two points with a curved line,
# and an arrow on the middle of it
seed(1679)
narrow = 3
rad_one = 50
numpoints = 3
random_points = list(randint(1,20,[numpoints,4]))
rpoints = [[(a,b),(c,d)] for a,b,c,d in random_points]
def curvline(start,end,rad,t=100,arrows=1,push=0.8):
#Compute midpoint
rad = rad/100.
x1, y1 = start
x2, y2 = end
y12 = (y1 + y2) / 2
dy = (y2 - y1)
cy = y12 + (rad) * dy
#Prepare line
tau = np.linspace(0,1,t)
xsupport = np.linspace(x1,x2,t)
ysupport = [(1-i)**2 * y1 + 2*(1-i)*i*cy + (i**2)*y2 for i in tau]
#Create arrow data
arset = list(np.linspace(0,1,arrows+2))
c = zip([xsupport[int(t*a*push)] for a in arset[1:-1]],
[ysupport[int(t*a*push)] for a in arset[1:-1]])
dt = zip([xsupport[int(t*a*push)+1]-xsupport[int(t*a*push)] for a in arset[1:-1]],
[ysupport[int(t*a*push)+1]-ysupport[int(t*a*push)] for a in arset[1:-1]])
arrowpath = zip(c,dt)
return xsupport, ysupport, arrowpath
def plotcurv(start,end,rad,t=100,arrows=1,arwidth=.25):
x, y, c = curvline(start,end,rad,t,arrows)
plt.plot(x,y,'k-')
for d,dt in c:
plt.arrow(d[0],d[1],dt[0],dt[1], shape='full', lw=0,
length_includes_head=False, head_width=arwidth)
return c
#Create figure
figure = plt.figure()
ax = plt.subplot(111)
for n1,n2 in rpoints:
#First line
plotcurv(n1,n2,rad_one,200,narrow,0.5)
#Second line
plotcurv(n2,n1,rad_one,200,narrow,0.5)
ax.set_xlim(0,20)
ax.set_ylim(0,20)
plt.show
我用三个随机的几个点测试它,来回绘制线条。这给出了下图:
该功能允许用户设置多个所需的箭头,并将它们均匀地放置在绘制的贝塞尔曲线上,确保表示适当的方向。但是,因为Bezier曲线并不完全是“弧形”,所以我试探性地推动箭头的开始使它们看起来更加居中。对此解决方案的任何改进都将不胜感激。