Tensorflow:提取训练模型的特征

时间:2016-02-02 20:39:56

标签: python machine-learning computer-vision tensorflow

我有一个AlexNet的实现。我对在完全连接的分类层之前提取训练模型的特征向量感兴趣

  1. 我想首先训练模型(下面我包括培训和测试的评估方法)。

  2. 如何在训练/测试集中的所有图像被分类之前获得最终输出特征向量列表(在前向传递期间)?

  3. 以下是代码(可用完整版https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3%20-%20Neural%20Networks/alexnet.py):

    weights = {
        'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),
        'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),
        'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),
        'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])),
        'wd2': tf.Variable(tf.random_normal([1024, 1024])),
        'out': tf.Variable(tf.random_normal([1024, 10]))
    }
    
    biases = {
        'bc1': tf.Variable(tf.random_normal([64])),
        'bc2': tf.Variable(tf.random_normal([128])),
        'bc3': tf.Variable(tf.random_normal([256])),
        'bd1': tf.Variable(tf.random_normal([1024])),
        'bd2': tf.Variable(tf.random_normal([1024])),
        'out': tf.Variable(tf.random_normal([n_classes]))
    }
    
    def alex_net(_X, _weights, _biases, _dropout):
       # Reshape input picture
    
    
        _X = tf.reshape(_X, shape=[-1, 28, 28, 1])
    
        # Convolution Layer
        conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
        # Max Pooling (down-sampling)
        pool1 = max_pool('pool1', conv1, k=2)
        # Apply Normalization
        norm1 = norm('norm1', pool1, lsize=4)
        # Apply Dropout
        norm1 = tf.nn.dropout(norm1, _dropout)
    
        # Convolution Layer
        conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
        ...
        # right before feeding the fully connected, classification layers
        # I'm interested in the vector after the weights 
        # are applied during the forward pass of a trained model.  
        dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]])
        # Relu activation
        dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1')
    
        # Relu activation
        dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2') 
    
        # Output, class prediction
        out = tf.matmul(dense2, _weights['out']) + _biases['out']
        return out
    
    
    pred = alex_net(x, weights, biases, keep_prob)
    
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
    
    # Evaluate model
    correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    # Launch the graph
    with tf.Session() as sess:
        sess.run(init)
        step = 1
        # Keep training until reach max iterations
        summary_writer = tf.train.SummaryWriter('/tmp/tensorflow_logs', graph_def=sess.graph_def)
    
        while step * batch_size < training_iters:
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            # Fit training using batch data
            sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
            if step % display_step == 0:
                # Calculate batch accuracy
                acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
                # Calculate batch loss
                loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
                print "Iter " + str(step*batch_size) + ", Minibatch Loss= " \
                      + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)
            step += 1
        print "Optimization Finished!"
        # Calculate accuracy for 256 mnist test images
        print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], 
                                                                 y: mnist.test.labels[:256], 
                                                                 keep_prob: 1.})
    

1 个答案:

答案 0 :(得分:2)

听起来你想要alex_net()的dense2值?如果是这样,除了out之外,还需要从alex_net()返回,所以

return out

变为

return dense2, out

pred = alex_net(x, weights, biases, keep_prob)

变为

before_classification_layer, pred = alex_net(...)

然后,只要您想要该值,就可以在调用sess.run()时获取before_classification_layer。请参阅https://www.tensorflow.org/versions/0.6.0/api_docs/python/client.html#Session.run中的tf.Session.run。请注意,提取可能是一个列表,因此为了避免在示例代码中对图表进行两次评估,您可以执行

# Calculate batch accuracy and loss
acc, loss = sess.run([accuracy, cost], feed_dict={...})

而不是

# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={...})
# Calculate batch loss
loss = sess.run(cost, feed_dict={...})

(在需要时将before_classification_layer添加到该列表。)