我正在尝试使用openMDAO的pyopt-sparse驱动程序和NSGA2算法来解决多目标优化问题。以下是代码:
from __future__ import print_function
from openmdao.api import IndepVarComp, Component, Problem, Group, pyOptSparseDriver
class Circ2(Component):
def __init__(self):
super(Circ2, self).__init__()
self.add_param('x', val=10.0)
self.add_param('y', val=10.0)
self.add_output('f1', val=40.0)
self.add_output('f2', val=40.0)
def solve_nonlinear(self, params, unknowns, resids):
x = params['x']
y = params['y']
unknowns['f1'] = (x - 0.0)**2 + (y - 0.0)**2
unknowns['f2'] = (x - 1.0)**2 + (y - 1.0)**2
def linearize(self, params, unknowns, resids):
J = {}
x = params['x']
y = params['y']
J['f1', 'x'] = 2*x
J['f1', 'y'] = 2*y
J['f2', 'x'] = 2*x-2
J['f2', 'y'] = 2*y-2
return J
if __name__ == "__main__":
# Defining Problem & Root
top = Problem()
root = top.root = Group()
# Adding in-present variable values and model
startVal = 50.0
root.add('p1', IndepVarComp('x', startVal))
root.add('p2', IndepVarComp('y', startVal))
root.add('p', Circ2())
# Making Connections
root.connect('p1.x', 'p.x')
root.connect('p2.y', 'p.y')
# Configuring Driver
top.driver = pyOptSparseDriver()
top.driver.options['optimizer'] = 'NSGA2'
# Setting bounds for the optimizer
top.driver.add_desvar('p1.x', lower=-600, upper=600)
top.driver.add_desvar('p2.y', lower=-600, upper=600)
# Setting Objective Function(s)
top.driver.add_objective('p.f1')
top.driver.add_objective('p.f2')
# # Setting up constraints
# top.driver.add_constraint('con.c', lower=1.0)
top.setup()
top.run()
我收到以下错误 -
Traceback (most recent call last):
File "/home/prasad/DivyaManglam/Python Scripts/Pareto Testing/Basic_Sphere.py", line 89, in <module>
top.run()
File "/usr/local/lib/python2.7/dist-packages/openmdao/core/problem.py", line 1038, in run
self.driver.run(self)
File "/usr/local/lib/python2.7/dist-packages/openmdao/drivers/pyoptsparse_driver.py", line 280, in run
sol = opt(opt_prob, sens=self._gradfunc, storeHistory=self.hist_file)
File "/usr/local/lib/python2.7/dist-packages/pyoptsparse/pyNSGA2/pyNSGA2.py", line 193, in __call__
self.optProb.comm.bcast(-1, root=0)
File "MPI/Comm.pyx", line 1276, in mpi4py.MPI.Comm.bcast (src/mpi4py.MPI.c:108819)
File "MPI/msgpickle.pxi", line 620, in mpi4py.MPI.PyMPI_bcast (src/mpi4py.MPI.c:47164)
File "MPI/msgpickle.pxi", line 143, in mpi4py.MPI.Pickle.load (src/mpi4py.MPI.c:41248)
TypeError: only length-1 arrays can be converted to Python scalars
请告诉您是否可以解决上述错误以及如何修复错误。
此外,将以何种形式返回多目标问题解决方案的输出。我打算为此产生一个帕累托最优的前沿。 谢谢大家。
答案 0 :(得分:2)
事实证明这不是OpenMDAO错误,而是NSGA2的Pyopt稀疏包装中的错误。解决方案并不可怕,我已经为pyoptsparse回购提交了pull request。与此同时,修补pyoptsparse的本地副本很容易。
您询问了如何报告结果。当前的NSGA2包装器对结果没有任何作用。它只是让NSGA2将它们全部写入一系列文本文件,如nsga2_best_pop.out
,如下所示:
# This file contains the data of final feasible population (if found)
# of objectives = 1, # of constraints = 0, # of real_var = 2, # of bits of bin_var = 0, constr_violation, rank, crowding_distance
-1.000000e+00 3.190310e+01 -2.413640e+02 0.000000e+00 1 1.000000e+14
-1.000000e+00 -5.309160e+02 2.449727e+02 0.000000e+00 1 0.000000e+00
-1.000000e+00 -3.995119e+02 -1.829071e+02 0.000000e+00 1 0.000000e+00
作为旁注,在您的示例中,您为示例中的组件实现了线性化方法。当您需要计算渐变时使用该方法,但NSGA2是一个无梯度优化器,并且根本不会使用它。因此,除非您还计划测试一些基于渐变的方法,否则您可以将该方法从组件中删除。