我是一个蟒蛇新手所以请原谅这个基本问题。 我的.xlsx文件看起来像这样
Unnamend:1 A Unnamend:2 B
2015-01-01 10 2015-01-01 10
2015-01-02 20 2015-01-01 20
2015-01-03 30 NaT NaN
当我使用pandas.read_excel(...)在Python中读取它时,pandas会自动使用第一列作为时间索引。
是否有一个单行通知熊猫注意到,每隔一列是一个时间索引属于它旁边的时间序列?
所需的输出如下所示:
date A B
2015-01-01 10 10
2015-01-02 20 20
2015-01-03 30 NaN
答案 0 :(得分:1)
为了解析相邻visit <insert path here>
的块并在各自的columns
索引上对齐,您可以执行以下操作:
从datetime
开始:
df
您可以在Int64Index: 3 entries, 0 to 2
Data columns (total 4 columns):
Unnamed: 0 3 non-null datetime64[ns]
A 3 non-null int64
Unnamed: 1 2 non-null datetime64[ns]
B 2 non-null float64
dtypes: datetime64[ns](2), float64(1), int64(1)
上迭代2列和merge
的块,如下所示:
index
得到:
def chunks(l, n):
""" Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
merged = df.loc[:, list(df)[:2]].set_index(list(df)[0])
for cols in chunks(list(df)[2:], 2):
merged = merged.merge(df.loc[:, cols].set_index(cols[0]).dropna(), left_index=True, right_index=True, how='outer')
遗憾的是, A B
2015-01-01 10 10
2015-01-01 10 20
2015-01-02 20 NaN
2015-01-03 30 NaN
无效,因为它无法处理重复的pd.concat
条目,否则可以使用index
:
list comprehension
答案 1 :(得分:0)
在使用pandas显示
之后,我使用xlrd导入数据import xlrd
import pandas as pd
workbook = xlrd.open_workbook(xls_name)
workbook = xlrd.open_workbook(xls_name, encoding_override="cp1252")
worksheet = workbook.sheet_by_index(0)
first_row = [] # The row where we stock the name of the column
for col in range(worksheet.ncols):
first_row.append( worksheet.cell_value(0,col) )
data =[]
for row in range(10, worksheet.nrows):
elm = {}
for col in range(worksheet.ncols):
elm[first_row[col]]=worksheet.cell_value(row,col)
data.append(elm)
first_column=second_column=third_column=[]
for elm in data :
first_column.append(elm(first_row[0]))
second_column.append(elm(first_row[1]))
third_column.append(elm(first_row[2]))
dict1={}
dict1[first_row[0]]=first_column
dict1[first_row[1]]=second_column
dict1[first_row[2]]=third_column
res=pd.DataFrame(dict1, columns=['column1', 'column2', 'column3'])
print res