我正试图实施一个"听写"使用PocketSphinx on Android和Keith Vertanen language models之一的功能。我已将the sample修改为如下所示:
private void setupRecognizer(File assetsDir) throws IOException {
recognizer = defaultSetup()
.setAcousticModel(new File(assetsDir, "en-us-ptm"))
.setDictionary(new File(assetsDir, "cmudict-en-us.dict"))
.setRawLogDir(assetsDir)
.setKeywordThreshold(1e-45f)
.setBoolean("-allphone_ci", true)
.getRecognizer();
recognizer.addListener(this);
File ngramModel = new File(assetsDir, "lm_csr_5k_nvp_2gram.arpa");
recognizer.addNgramSearch(NGRAM_SEARCH, ngramModel);
其中lm_csr_5k_nvp_2gram.arpa
来自Keith Vertanen网站上的5K NVP 2克下载量。
我收到此错误:
1 18:04:29.861 2837-2863/? I/SpeechRecognizer: Load N-gram model /storage/emulated/0/Android/data/edu.cmu.sphinx.pocketsphinx/files/sync/lm_csr_5k_nvp_2gram.arpa
01-31 18:04:29.861 2837-2863/? I/cmusphinx: INFO: ngram_model_trie.c(399): Trying to read LM in trie binary format
01-31 18:04:29.861 2837-2863/? I/cmusphinx: INFO: ngram_model_trie.c(410): Header doesn't match
01-31 18:04:29.861 2837-2863/? I/cmusphinx: INFO: ngram_model_trie.c(177): Trying to read LM in arpa format
01-31 18:04:29.862 2837-2863/? E/cmusphinx: ERROR: "ngram_model_trie.c", line 103: Bad ngram count
01-31 18:04:29.862 2837-2863/? I/cmusphinx: INFO: ngram_model_trie.c(489): Trying to read LM in DMP format
01-31 18:04:29.862 2837-2863/? E/cmusphinx: ERROR: "ngram_model_trie.c", line 500: Wrong magic header size number a5c6461: /storage/emulated/0/Android/data/edu.cmu.sphinx.pocketsphinx/files/sync/lm_csr_5k_nvp_2gram.arpa is not a dump file
01-31 18:04:29.864 2837-2863/? E/AndroidRuntime: FATAL EXCEPTION: AsyncTask #1
Process: edu.cmu.sphinx.pocketsphinx, PID: 2837
java.lang.RuntimeException: An error occurred while executing doInBackground()
at android.os.AsyncTask$3.done(AsyncTask.java:309)
at java.util.concurrent.FutureTask.finishCompletion(FutureTask.java:354)
at java.util.concurrent.FutureTask.setException(FutureTask.java:223)
at java.util.concurrent.FutureTask.run(FutureTask.java:242)
at android.os.AsyncTask$SerialExecutor$1.run(AsyncTask.java:234)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1113)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:588)
at java.lang.Thread.run(Thread.java:818)
Caused by: java.lang.RuntimeException: Decoder_setLmFile returned -1
at edu.cmu.pocketsphinx.PocketSphinxJNI.Decoder_setLmFile(Native Method)
at edu.cmu.pocketsphinx.Decoder.setLmFile(Decoder.java:172)
at edu.cmu.pocketsphinx.SpeechRecognizer.addNgramSearch(SpeechRecognizer.java:247)
at edu.cmu.pocketsphinx.demo.PocketSphinxActivity.setupRecognizer(PocketSphinxActivity.java:161)
at edu.cmu.pocketsphinx.demo.PocketSphinxActivity.access$000(PocketSphinxActivity.java:50)
at edu.cmu.pocketsphinx.demo.PocketSphinxActivity$1.doInBackground(PocketSphinxActivity.java:72)
at edu.cmu.pocketsphinx.demo.PocketSphinxActivity$1.doInBackground(PocketSphinxActivity.java:66)
at android.os.AsyncTask$2.call(AsyncTask.java:295)
at java.util.concurrent.FutureTask.run(FutureTask.java:237)
at android.os.AsyncTask$SerialExecutor$1.run(AsyncTask.java:234)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1113)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:588)
at java.lang.Thread.run(Thread.java:818)
行
01-31 18:04:29.861 2837-2863/? I/cmusphinx: INFO: ngram_model_trie.c(177): Trying to read LM in arpa format
01-31 18:04:29.862 2837-2863/? E/cmusphinx: ERROR: "ngram_model_trie.c", line 103: Bad ngram count
让我认为lm_csr_5k_nvp_2gram.arpa
文件格式不正确或者其他内容。该文件如下所示:
\data\
ngram 1=5000
ngram 2=4331397
ngram 3=0
\1-grams:
-2.11154 </s> 0
-99 <s> -3.13167
-0.3954594 <unk> -0.4365645
-2.271447 a -2.953606
-3.384721 a. -1.85196
-5.788997 a.'s -0.8137056
-4.139672 abandoned -0.9728376
-3.904189 ability -1.838658
-4.360272 able -2.161723
...
至少看起来像示例文件here。
我唯一的另一个想法是,可能延伸是错误的,因为this说
语言模型可以以三种不同的格式存储和加载 - 文本ARPA格式,二进制格式BIN和二进制DMP格式。 ARPA格式占用更多空间,但可以编辑它。 ARPA文件的扩展名为.lm。二进制格式占用的空间更少,加载速度更快。二进制文件的扩展名为.lm.bin。也可以在格式之间进行转换。 DMP格式已过时,不推荐使用。
这使得听起来应该将文件命名为lm_csr_5k_nvp_2gram.lm
而不是lm_csr_5k_nvp_2gram.arpa
。我确实尝试重命名该文件,但没有任何异常更改。
这样做的正确方法是什么?
答案 0 :(得分:2)
嗯,这是模型格式的问题,ngram模型中的这一行导致了一个问题:
ngram 3=0
您可以删除有问题的行或更新pocketsphinx-android-demo,我只是推出了修复此问题的新版本。
总的来说,手机上的听写并非微不足道,因为手机真的很慢。我不建议你使用2克,最好使用重度修剪的3克模型。你可以修剪srilm。
您还可以阅读optimization doc以了解要调整的内容。
答案 1 :(得分:0)
使用sphinx上的以下命令将您的arpa文件转换为语言模型(lm)。
sphinx_lm_convert -i lm_csr_5k_nvp_2gram.arpa -o lm_csr_5k_nvp_2gram.lm.dmp
在Android程序中使用生成的语言模型。
recognizer.addNgramSearch(DIGITS_SEARCH,new File(assetsDir, "lm_csr_5k_nvp_2gram.lm.dmp"))