DataFrame会爆炸JSON对象列表

时间:2016-01-28 18:05:49

标签: scala apache-spark apache-spark-sql distributed-computing

我有以下格式的JSON数据:

{
     "date": 100
     "userId": 1
     "data": [
         {
             "timeStamp": 101,
             "reading": 1
         },
         {
             "timeStamp": 102,
             "reading": 2
         }
     ]
 }
 {
     "date": 200
     "userId": 1
     "data": [
         {
             "timeStamp": 201,
             "reading": 3
         },
         {
             "timeStamp": 202,
             "reading": 4
         }
     ]
 }

我把它读入Spark SQL:

val df = SQLContext.read.json(...)
df.printSchema
// root
//  |-- date: double (nullable = true)
//  |-- userId: long (nullable = true)
//  |-- data: array (nullable = true)
//  |     |-- element: struct (containsNull = true)
//  |     |    |-- timeStamp: double (nullable = true)
//  |     |    |-- reading: double (nullable = true)

我想将其转换为每次读取一行。据我所知,每次转换都应该生成一个新的DataFrame,因此以下内容应该有效:

import org.apache.spark.sql.functions.explode
val exploded = df
    .withColumn("reading", explode(df("data.reading")))
    .withColumn("timeStamp", explode(df("data.timeStamp")))
    .drop("data")
exploded.printSchema
// root
//  |-- date: double (nullable = true)
//  |-- userId: long (nullable = true)
//  |-- timeStamp: double (nullable = true)
//  |-- reading: double (nullable = true)

结果架构是正确的,但我得到每个值两次:

exploded.show
// +-----------+-----------+-----------+-----------+
// |       date|     userId|  timeStamp|    reading|
// +-----------+-----------+-----------+-----------+
// |        100|          1|        101|          1|
// |        100|          1|        101|          1|
// |        100|          1|        102|          2|
// |        100|          1|        102|          2|
// |        200|          1|        201|          3|
// |        200|          1|        201|          3|
// |        200|          1|        202|          4|
// |        200|          1|        202|          4|
// +-----------+-----------+-----------+-----------+

我的感觉是,对于我不理解的两种爆炸的懒惰评估有一些东西。

有没有办法让上面的代码工作?或者我应该一起使用不同的方法吗?

1 个答案:

答案 0 :(得分:4)

  

结果架构是正确的,但我得到每个值两次

虽然架构正确,但您提供的输出并不反映实际结果。在实践中,您将为每个输入行获得timeStampreading的笛卡尔积。

  

我的感觉是懒惰评估有一些东西

不,它与懒惰评估无关。你使用explode的方式是错误的。要了解发生了什么,让date的跟踪执行等于100:

val df100 = df.where($"date" === 100)

一步一步。首先explode将生成两行,一行为1,一行为2:

val df100WithReading = df100.withColumn("reading", explode(df("data.reading")))

df100WithReading.show
// +------------------+----+------+-------+
// |              data|date|userId|reading|
// +------------------+----+------+-------+
// |[[1,101], [2,102]]| 100|     1|      1|
// |[[1,101], [2,102]]| 100|     1|      2|
// +------------------+----+------+-------+

第二次爆炸为上一步中的每一行生成两行(timeStamp等于101和102):

val df100WithReadingAndTs = df100WithReading
  .withColumn("timeStamp", explode(df("data.timeStamp")))

df100WithReadingAndTs.show
// +------------------+----+------+-------+---------+
// |              data|date|userId|reading|timeStamp|
// +------------------+----+------+-------+---------+
// |[[1,101], [2,102]]| 100|     1|      1|      101|
// |[[1,101], [2,102]]| 100|     1|      1|      102|
// |[[1,101], [2,102]]| 100|     1|      2|      101|
// |[[1,101], [2,102]]| 100|     1|      2|      102|
// +------------------+----+------+-------+---------+

如果您想要正确的结果explode数据和select之后的数据:

val exploded = df.withColumn("data", explode($"data"))
  .select($"userId", $"date",
    $"data".getItem("reading"),  $"data".getItem("timestamp"))

exploded.show
// +------+----+-------------+---------------+
// |userId|date|data[reading]|data[timestamp]|
// +------+----+-------------+---------------+
// |     1| 100|            1|            101|
// |     1| 100|            2|            102|
// |     1| 200|            3|            201|
// |     1| 200|            4|            202|
// +------+----+-------------+---------------+