我正在研究MATLAB上的模式识别项目。我正在研究fisher iris数据集。我写了一些适用于k-NN分类的代码,在完成分类后我想计算混淆矩阵。我所有的尝试都失败了。所以,我要求你帮忙找到一种计算混淆矩阵C的方法。
代码的相关部分如下所示:
fold_number = 5;
indices = crossvalind('Kfold',species, fold_number);
val = 1:2:5; % for these small k values there will not be an important difference
% regarding the cp ErrorRates. The difference is going to be
% observable for val = 1:2:100, for example!!! But the
% exercise asks only for k = 1,3,5.
err_arr = [];
for k=val
cp = classperf(species); % Reinitialize the cp-structure!
for i = 1:fold_number
test = (indices == i);
train = ~test;
class = knnclassify(meas(test,:),meas(train,:),species(train), k);
%class = knnclassify(meas(test,2),meas(train,2),species(train), k); % To experiment only with the 2nd feature
classperf(cp,class,test);
end
err_arr = [err_arr; cp.ErrorRate];
fprintf('The k-NN classification error rate for k = %d is: %f\n', k,cp.ErrorRate);
end
fprintf('\n The error array is: \n');
disp(err_arr);
我期待着阅读你的答案!
答案 0 :(得分:1)
如果您可以访问统计信息和机器学习工具箱,则可以使用confusionmat function。如果您将已知分类(C
)和您的k-nn oputput(在您的示例中由knownGroups
给出的预测分类)作为输入,则返回混淆矩阵class
:
[C] = confusionmat(knownGroups,class)