如何为colorbar contourf matplotlib

时间:2016-01-27 20:11:57

标签: python matplotlib colorbar

我有一个空间值的值,我在一天中定期输出。我正在使用contourf进行绘图,我希望在当天的数据中执行以下操作:

  • 将colobar上的颜色限制为表示当天数据的最小值和最大值的值
  • 在天数数据的最大值和最小值的情况下,将颜色条保持静态超过24小时图
  • 在24小时内保持标签静止

例如:

data = np.random.uniform(0, 5, size=(24,30,30))
data[3,:,:]=np.random.uniform(1,3,size=(30,30))  # example of bad plot
fgsize=(12,4)
numrecs = np.size(data,axis=0)
cbar_min = np.min(data)
cbar_max = np.max(data)
cbarlabels = np.linspace(np.floor(cbar_min), np.ceil(cbar_max), num=5, endpoint=True)


for tt in range(0, numrecs):
    plt.figure(figsize=fgsize, dpi=80)
    plt.title('this is a title')
    plt.contourf(data[tt, :, :], 35, vmin=cbar_min, vmax=cbar_max, cmap='coolwarm')
    cbar =plt.colorbar()
    cbar.set_ticks(cbarlabels)
    cbar.set_ticklabels(cbarlabels)
    cbar.set_label('my data has units')
    plt.show()
    plt.close()

以下是bad plot的示例。颜色似乎有限,但颜色条改变其颜色/标签限制。我该如何解决?

以下是good plot

的示例

1 个答案:

答案 0 :(得分:1)

事实证明,在设置色彩图的级别时,contourf有点棘手,请参阅this answer。您可以通过标准化轮廓来获得适当的限制和颜色,如下所示:

import numpy as np
import matplotlib.pyplot as plt

data = np.random.uniform(0, 5, size=(24,30,30))
data[3,:,:]=np.random.uniform(1,3,size=(30,30))  # example of bad plot
fgsize=(12,4)
numrecs = np.size(data,axis=0)
cbar_min = np.min(data)
cbar_max = np.max(data)
cbarlabels = np.linspace(np.floor(cbar_min), np.ceil(cbar_max), num=5, endpoint=True)

# Set the normalisation for 35 levels (as in your example)
import matplotlib.colors as mc
levels = np.linspace(np.floor(cbar_min), np.ceil(cbar_max), 35) # to draw 35 levels
norm = mc.BoundaryNorm(levels, 256)

for tt in range(0, numrecs):
    print cbar_min, cbar_max
    plt.figure(figsize=fgsize, dpi=80)
    plt.title('this is a title')

    # Draw those levels, with proper normalisation, here:
    plt.contourf(data[tt, :, :], levels, vmin=cbar_min, vmax=cbar_max, cmap='coolwarm', levels=levels, norm=norm)

    cbar = plt.colorbar()
    cbar.set_ticks(cbarlabels)
    cbar.set_ticklabels(cbarlabels)
    cbar.set_label('my data has units')
    plt.show()