我有一个DataFrame
df
,其中一列使用以下代码创建category
:
import pandas as pd
import random as rand
from string import ascii_uppercase
rand.seed(1010)
df = pd.DataFrame()
values = list()
for i in range(0,1000):
category = (''.join(rand.choice(ascii_uppercase) for i in range(1)))
values.append(category)
df['category'] = values
每个值的频率计数为:
df['category'].value_counts()
Out[95]:
P 54
B 50
T 48
V 46
I 46
R 45
F 43
K 43
U 41
C 40
W 39
E 39
J 39
X 37
M 37
Q 35
Y 35
Z 34
O 33
D 33
H 32
G 32
L 31
N 31
S 29
我想在名为“其他”的df['category']
列中创建一个新值,并指定df['category']
小于value_count
的所有值35
。
有人可以帮我解决这个问题吗?
如果您需要更多信息,请告诉我
来自@EdChum的EDIT建议解决方案
import pandas as pd
import random as rand
from string import ascii_uppercase
rand.seed(1010)
df = pd.DataFrame()
values = list()
for i in range(0,1000):
category = (''.join(rand.choice(ascii_uppercase) for i in range(1)))
values.append(category)
df['category'] = values
df['category'].value_counts()
df.loc[df['category'].isin((df['category'].value_counts([df['category'].value_counts() < 35]).index), 'category'] = 'other'
File "<stdin>", line 1
df.loc[df['category'].isin((df['category'].value_counts()[df['category'].value_counts() < 35]).index), 'category'] = 'other'
^
SyntaxError: invalid syntax
请注意,我在Spyder IDE上使用Python 2.7(我在iPython和Python控制台窗口中尝试了建议的解决方案)
答案 0 :(得分:3)
您可以使用value_counts
生成一个布尔值掩码来屏蔽这些值,然后将这些值设置为“其他&#39;使用loc
:
In [71]:
df.loc[df['category'].isin((df['category'].value_counts()[df['category'].value_counts() < 35]).index), 'category'] = 'other'
df
Out[71]:
category
0 other
1 other
2 A
3 V
4 U
5 D
6 T
7 G
8 S
9 H
10 other
11 other
12 other
13 other
14 S
15 D
16 B
17 P
18 B
19 other
20 other
21 F
22 H
23 G
24 P
25 other
26 M
27 V
28 T
29 A
.. ...
970 E
971 D
972 other
973 P
974 V
975 S
976 E
977 other
978 H
979 V
980 O
981 other
982 O
983 Z
984 other
985 P
986 P
987 other
988 O
989 other
990 P
991 X
992 E
993 V
994 B
995 P
996 B
997 P
998 Q
999 X
[1000 rows x 1 columns]
突破以上:
In [74]:
df['category'].value_counts() < 35
Out[74]:
W False
B False
C False
V False
H False
P False
T False
R False
U False
K False
E False
Y False
M False
F False
O False
A False
D False
Q False
N True
J True
S True
G True
Z True
I True
X True
L True
Name: category, dtype: bool
In [76]:
df['category'].value_counts()[df['category'].value_counts() < 35]
Out[76]:
N 34
J 33
S 33
G 33
Z 32
I 31
X 31
L 30
Name: category, dtype: int64
然后我们可以针对isin
值使用.index
并将行设置为&#39;其他&#39;
答案 1 :(得分:1)
Unit 2 assignment notebook中有一个示例:
# Reduce cardinality for NEIGHBORHOOD feature
# Get a list of the top 10 neighborhoods
top10 = df['NEIGHBORHOOD'].value_counts()[:10].index
# At locations where the neighborhood is NOT in the top 10,
# replace the neighborhood with 'OTHER'
df.loc[~df['NEIGHBORHOOD'].isin(top10), 'NEIGHBORHOOD'] = 'OTHER'