假设我有3个可由上层调用的函数:
Start
- 只有在我们尚未启动时才会被调用,或者之前被称为停止Stop
- 只有在成功调用Start Process
- 可以在任何时间调用(同时在不同的线程上);如果开始,将调用下层在Stop
中,它必须等待所有Process
次呼叫完成对较低层的呼叫,并阻止进一步呼叫。使用锁定机制,我可以提出以下伪代码:
Start() {
ResetEvent(&StopCompleteEvent);
IsStarted = true;
RefCount = 0;
}
Stop() {
AcquireLock();
IsStarted = false;
WaitForCompletionEvent = (RefCount != 0);
ReleaseLock();
if (WaitForCompletionEvent)
WaitForEvent(&StopCompleteEvent);
ASSERT(RefCount == 0);
}
Process() {
AcquireLock();
AddedRef = IsStarted;
if (AddedRef)
RefCount++;
ReleaseLock();
if (!AddedRef) return;
ProcessLowerLayer();
AcquireLock();
FireCompletionEvent = (--RefCount == 0);
ReleaseLock();
if (FilreCompletionEvent)
SetEvent(&StopCompleteEvent);
}
有没有办法在没有锁定机制的情况下实现相同的行为?或许有一些使用InterlockedCompareExchange和InterlockedIncremenet / InterlockedDecrement?
我问的原因是这是在网络驱动程序的数据路径中,我真的不想有任何锁定。
答案 0 :(得分:2)
我相信可以避免使用显式锁和任何不必要的阻塞或内核调用。
请注意,这只是伪代码,仅用于说明目的;它没有见过编译器。虽然我认为线程逻辑是合理的,但请自行验证其正确性,或让专家对其进行验证;无锁编程是 hard 。
#define STOPPING 0x20000000;
#define STOPPED 0x40000000;
volatile LONG s = STOPPED;
// state and count
// bit 30 set -> stopped
// bit 29 set -> stopping
// bits 0 through 28 -> thread count
Start()
{
KeClearEvent(&StopCompleteEvent);
LONG n = InterlockedExchange(&s, 0); // sets s to 0
if ((n & STOPPED) == 0)
bluescreen("Invalid call to Start()");
}
Stop()
{
LONG n = InterlockedCompareExchange(&s, STOPPED, 0);
if (n == 0)
{
// No calls to Process() were running so we could jump directly to stopped.
// Mission accomplished!
return;
}
LONG n = InterlockedOr(&s, STOPPING);
if ((n & STOPPED) != 0)
bluescreen("Stop called when already stopped");
if ((n & STOPPING) != 0)
bluescreen("Stop called when already stopping");
n = InterlockedCompareExchange(&s, STOPPED, STOPPING);
if (n == STOPPING)
{
// The last call to Process() exited before we set the STOPPING flag.
// Mission accomplished!
return;
}
// Now that STOPPING mode is set, and we know at least one call to Process
// is running, all we need do is wait for the event to be signaled.
KeWaitForSingleObject(...);
// The event is only ever signaled after a thread has successfully
// changed the state to STOPPED. Mission accomplished!
return;
}
Process()
{
LONG n = InterlockedCompareExchange(&s, STOPPED, STOPPING);
if (n == STOPPING)
{
// We've just stopped; let the call to Stop() complete.
KeSetEvent(&StopCompleteEvent);
return;
}
if ((n & STOPPED) != 0 || (n & STOPPING) != 0)
{
// Checking here avoids changing the state unnecessarily when
// we already know we can't enter the lower layer.
// It also ensures that the transition from STOPPING to STOPPED can't
// be delayed even if there are lots of threads making new calls to Process().
return;
}
n = InterlockedIncrement(&s);
if ((n & STOPPED) != 0)
{
// Turns out we've just stopped, so the call to Process() must be aborted.
// Explicitly set the state back to STOPPED, rather than decrementing it,
// in case Start() has been called. At least one thread will succeed.
InterlockedCompareExchange(&s, STOPPED, n);
return;
}
if ((n & STOPPING) == 0)
{
ProcessLowerLayer();
}
n = InterlockedDecrement(&s);
if ((n & STOPPED) != 0 || n == (STOPPED - 1))
bluescreen("Stopped during call to Process, shouldn't be possible!");
if (n != STOPPING)
return;
// Stop() has been called, and it looks like we're the last
// running call to Process() in which case we need to change the
// status to STOPPED and signal the call to Stop() to exit.
// However, another thread might have beaten us to it, so we must
// check again. The event MUST only be set once per call to Stop().
n = InterlockedCompareExchange(&s, STOPPED, STOPPING);
if (n == STOPPING)
{
// We've just stopped; let the call to Stop() complete.
KeSetEvent(&StopCompleteEvent);
}
return;
}