我正在尝试计算真阳性率等。二进制混淆矩阵,并将结果输出到csv文件。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import csv
from sklearn.metrics import confusion_matrix
AllBinary = pd.read_csv('BinaryData.csv')
y_test = AllBinary['Binary_ac']
y_pred = AllBinary['Binary_pred']
cm = confusion_matrix(y_test, y_pred)
stats = pd.DataFrame()
TP = cm[0][0]
FP = cm[0][1]
FN = cm[1][0]
TN = cm[1][1]
stats['TruePositive'] = TP
stats['TrueNegative'] = TN
stats['FalsePositive'] = FP
stats['FalseNegative'] = FN
print(TP)
print(TN)
print(FP)
print(FN)
stats.to_csv('C:/out/' + 'BinaryStats' + '.csv', header = True)
打印结果显示基本混淆矩阵统计量计算如下:
210483
153902
32845
10788
csv输出创建标题,但结果为空。我做错了什么?
更新
print(stats)
Empty DataFrame
Columns: [TruePositive, TrueNegative, Falsepositive, FalseNegative]
答案 0 :(得分:3)
这里的问题是你不能通过简单地为新列分配标量值来附加到这样的df:
In [55]:
stats = pd.DataFrame()
stats['TruePositive'] = 210483
stats
Out[55]:
Empty DataFrame
Columns: [TruePositive]
Index: []
您需要在ctor中使用所需的值构建df:
In [62]:
TP = 210483
FP = 153902
FN = 32845
TN = 10788
stats = pd.DataFrame({'TruePositive':[TP], 'TrueNegative':[TN], 'FalsePositive':[FP], 'FalseNegative':[FN]})
stats
Out[62]:
FalseNegative FalsePositive TrueNegative TruePositive
0 32845 153902 10788 210483
或者添加一个虚拟行,然后你的代码就可以了:
In [71]:
stats = pd.DataFrame()
stats = stats.append(pd.Series('dummy'), ignore_index=True)
stats['TruePositive'] = TP
stats['TrueNegative'] = TN
stats['FalsePositive'] = FP
stats['FalseNegative'] = FN
stats
Out[71]:
0 TruePositive TrueNegative FalsePositive FalseNegative
0 dummy 210483 10788 153902 32845
然后您可以删除调用drop
的虚拟列:
In [72]:
stats.drop(0, axis=1)
Out[72]:
TruePositive TrueNegative FalsePositive FalseNegative
0 210483 10788 153902 32845
那么为什么你的尝试失败是因为你的初始df是空的,你正在分配一个标量值的新列,标量值会将新列的所有行设置为该值。由于你的df没有行,这就失败了,这就是为什么你有一个空的df。
另一种方法是用单行创建df(这里我放NaN
):
In [77]:
stats = pd.DataFrame([np.NaN])
stats['TruePositive'] = TP
stats['TrueNegative'] = TN
stats['FalsePositive'] = FP
stats['FalseNegative'] = FN
stats.dropna(axis=1)
Out[77]:
TruePositive TrueNegative FalsePositive FalseNegative
0 210483 10788 153902 32845