我尝试将对象类型列page_view_count
字段转换为数据框列。
我有一个数据框:
_id page_view_count
568a8c25cac4991645c287ac {u'main-rating': 2, u'detailed-rating2': 1, u'detailed-rating': 2}
568cd22e9e82dfc166d7dff1 {u'main-rating': 1, u'thank-you': 1, u'detailed-rating2': 1, u'detailed-rating': 1, u'comments': 1}
568e5a38b4a797c664143dda {u'main-rating': 1, u'detailed-rating2': 1, u'detailed-rating': 1}
568e5a561ae56e09656bfb99 {u'main-rating': 1, u'detailed-rating': 1}
56b24c651fd6901e0ac262e4 nan
568df45a177e30c6487d3600 {u'main-rating': 1, u'thank-you': 1, u'detailed-rating2': 1, u'detailed-rating': 1, u'comments': 1}
我想将page_view_count的字段作为数据框的列:
_id main-rating detailed-rating detailed-rating2 comments thank-you
568a8c25cac4991645c287ac 2 1 1 nan nan
568cd22e9e82dfc166d7dff1 1 1 1 1 1
568e5a38b4a797c664143dda 1 1 1 nan nan
568e5a561ae56e09656bfb99 1 1 nan nan nan
56b24c651fd6901e0ac262e4 nan nan nan nan nan
568df45a177e30c6487d3600 1 1 1 1 1
有什么办法吗?
答案 0 :(得分:1)
您可以从列page_view_count
和join
列_id
创建新的数据框。最后sort_index
:
df1 = pd.DataFrame([x for x in df['page_view_count']]).join(df['_id'])
df1 = df1.sort_index(1)
print df1
_id comments detailed-rating detailed-rating2 \
0 568a8c25cac4991645c287ac NaN 2 1
1 568cd22e9e82dfc166d7dff1 1 1 1
2 568e5a38b4a797c664143dda NaN 1 1
3 568e5a561ae56e09656bfb99 NaN 1 NaN
4 568df45a177e30c6487d3600 1 1 1
main-rating thank-you
0 2 NaN
1 1 1
2 1 NaN
3 1 NaN
4 1 1
编辑:
NaN
加入时仍然存在问题。
解决方案是将NaN
替换为fillna
以清空dictionary
,然后创建Dataframe
:
import pandas as pd
import numpy as np
df = pd.DataFrame([[1, {'name':'Jack','email':'abc'} ],
[2, np.nan],
[3, {'name':'Ram','email':'xyz'} ],
], columns=['_id','page_view_count'])
print df[df['page_view_count'].isnull()].index
#Int64Index([1], dtype='int64')
print pd.Series([{}], index=df[df['page_view_count'].isnull()].index , name='page_view_count')
#1 {}
#Name: page_view_count, dtype: object
df['page_view_count'] = df['page_view_count'].fillna(pd.Series([{}], index=df[df['page_view_count'].isnull()].index , name='page_view_count'))
print df
# _id page_view_count
#0 1 {u'name': u'Jack', u'email': u'abc'}
#1 2 {}
#2 3 {u'name': u'Ram', u'email': u'xyz'}
df1 = pd.DataFrame([x for x in df['page_view_count']]).join(df['_id'], how='right')
df1 = df1.sort_index(1)
print df1
# _id email name
#0 1 abc Jack
#1 2 NaN NaN
#2 3 xyz Ram