我有几张图片可以显示某些事情的变化。我使用以下代码在同一块图上将它们可视化为多个图像:
import matplotlib.pyplot as plt
import matplotlib.cm as cm
img = [] # some array of images
fig = plt.figure()
for i in xrange(6):
fig.add_subplot(2, 3, i + 1)
plt.imshow(img[i], cmap=cm.Greys_r)
plt.show()
的内容
哪个好,但我宁愿让它们动画以获得something like this video。我如何使用python实现这一点,最好(不一定)使用matplotlib
答案 0 :(得分:9)
对于未来我自己,这就是我最终的目标:
def generate_video(img):
for i in xrange(len(img)):
plt.imshow(img[i], cmap=cm.Greys_r)
plt.savefig(folder + "/file%02d.png" % i)
os.chdir("your_folder")
subprocess.call([
'ffmpeg', '-framerate', '8', '-i', 'file%02d.png', '-r', '30', '-pix_fmt', 'yuv420p',
'video_name.mp4'
])
for file_name in glob.glob("*.png"):
os.remove(file_name)
答案 1 :(得分:1)
您可以使用plt.savefig("file%d.png" % i)
将图像导出到png,然后使用ffmpeg生成视频。
答案 2 :(得分:0)
我实现了一个方便的脚本,适合你和新来的人。试一试here。
对于你的例子:
imagelist = YOUR-IMAGE-LIST
def redraw_fn(f, axes):
img = imagelist[f]
if not redraw_fn.initialized:
redraw_fn.im = axes.imshow(img, animated=True)
redraw_fn.initialized = True
else:
redraw_fn.im.set_array(img)
redraw_fn.initialized = False
videofig(len(imagelist), redraw_fn, play_fps=30)
答案 3 :(得分:0)
另一种解决方案是使用animated image demo中所述的AnimationArtist
中的matplotlib.animation
。适应您的示例将是
import matplotlib.pyplot as plt
import matplotlib.cm as cm
img = [] # some array of images
frames = [] # for storing the generated images
fig = plt.figure()
for i in xrange(6):
frames.append([plt.imshow(img[i], cmap=cm.Greys_r,animated=True)])
ani = animation.ArtistAnimation(fig, ims, interval=50, blit=True,
repeat_delay=1000)
# ani.save('movie.mp4')
plt.show()
答案 4 :(得分:0)
您可以尝试延迟顺序绘制图像(帧)。如果您有很多帧,可以在plt.pause()
函数中减少帧之间的等待时间。
# need this line if you're using jupyter notebooks
%matplotlib notebook
x = [] # Some array of images
fig = plt.figure()
viewer = fig.add_subplot(111)
plt.ion() # Turns interactive mode on (probably unnecessary)
fig.show() # Initially shows the figure
for i in range(len(x)):
viewer.clear() # Clears the previous image
viewer.imshow(x[i]) # Loads the new image
plt.pause(.1) # Delay in seconds
fig.canvas.draw() # Draws the image to the screen
答案 5 :(得分:0)
您可以使用Agg
界面从matplotlib导出图像。
请参见这些示例:
这是您的完整代码:
# imports
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import cv2
# Use Agg backend for canvas
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
# create OpenCV video writer
video = cv2.VideoWriter('video.mp4', cv2.VideoWriter_fourcc('A','V','C','1'), 1, (mat.shape[0],mat.shape[1]))
# loop over your images
for i in xrange(len(img)):
fig = plt.figure()
plt.imshow(img[i], cmap=cm.Greys_r)
# put pixel buffer in numpy array
canvas = FigureCanvas(fig)
canvas.draw()
mat = np.array(canvas.renderer._renderer)
mat = cv2.cvtColor(mat, cv2.COLOR_RGB2BGR)
# write frame to video
video.write(mat)
# close video writer
cv2.destroyAllWindows()
video.release()
答案 6 :(得分:0)
这是一个可复制粘贴的函数,如果您正在处理长视频并且正在使用流式迭代器(来自 here),这很方便
from typing import Iterator, Optional, Tuple
from pathlib import Path
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
def write_animation(
itr: Iterator[np.array],
out_file: Path,
dpi: int = 50,
fps: int = 30,
title: str = "Animation",
comment: Optional[str] = None,
writer: str = "ffmpeg",
) -> None:
"""Function that writes an animation from a stream of input tensors.
Args:
itr: The image iterator, yielding images with shape (H, W, C).
out_file: The path to the output file.
dpi: Dots per inch for output image.
fps: Frames per second for the video.
title: Title for the video metadata.
comment: Comment for the video metadata.
writer: The Matplotlib animation writer to use (if you use the
default one, make sure you have `ffmpeg` installed on your
system).
"""
first_img = next(itr)
height, width, _ = first_img.shape
fig, ax = plt.subplots(figsize=(width / dpi, height / dpi))
# Ensures that there's no extra space around the image.
fig.subplots_adjust(
left=0,
bottom=0,
right=1,
top=1,
wspace=None,
hspace=None,
)
# Creates the writer with the given metadata.
Writer = mpl.animation.writers[writer]
metadata = {
"title": title,
"artist": __name__,
"comment": comment,
}
mpl_writer = Writer(
fps=fps,
metadata={k: v for k, v in metadata.items() if v is not None},
)
with mpl_writer.saving(fig, out_file, dpi=dpi):
im = ax.imshow(first_img, interpolation="nearest")
mpl_writer.grab_frame()
for img in itr:
im.set_data(img)
mpl_writer.grab_frame()