dfmiss=data.frame(x=c(1,4,6,NA,7,NA,9,10,4,3),
y=c(10,12,NA,NA,14,18,20,15,12,17),
z=c(225,198,520,147,NA,130,NA,200,NA,99),
v=c(44,51,74,89,45,55,25,36,75,25))
我使用mi
包将这些不完整的数据估算如下:
istall.package("mi")
library(mi)
mdf <- missing_data.frame(dfmiss) # change dataframe to missing_data.frame
imp=mi(mdf)
complete(imp,1)
x y z v missing_x missing_y missing_z
1 1.000000 10.000000 225.00000 44 FALSE FALSE FALSE
2 4.000000 12.000000 198.00000 51 FALSE FALSE FALSE
3 6.000000 -2.631072 520.00000 74 FALSE TRUE FALSE
4 9.189989 14.760334 147.00000 89 TRUE TRUE FALSE
5 7.000000 14.000000 188.37644 45 FALSE FALSE TRUE
6 11.127962 18.000000 130.00000 55 TRUE FALSE FALSE
7 9.000000 20.000000 92.30703 25 FALSE FALSE TRUE
8 10.000000 15.000000 200.00000 36 FALSE FALSE FALSE
9 4.000000 12.000000 184.29575 75 FALSE FALSE TRUE
10 3.000000 17.000000 99.00000 25 FALSE FALSE FALSE
complete()
命令返回完整的数据集,但是我想要返回这个完整的数据集out(列为TRUE / FALSE)[missing_x,missing_y,missing_z]。
答案 0 :(得分:1)
您可以删除多余的列:
hiddenimports = [
'ssl',
'cPickle',
'pickle',
'itertools',
'multiprocessing',
'builtins',
'rethinkdb',
'rethinkdb.ast',
'rethinkdb.errors',
'rethinkdb.net',
'rethinkdb.ql2_pb2',
'rethinkdb.query',
'rethinkdb.version',
]