我使用netCDF文件存储一个变量并具有以下维度:lon,lat,time。 一般来说,我希望将它与我已经存储为数据帧的R中的不同数据进行比较 - 前两列是WGS84中的坐标,接下来是特定时间的值。
所以我写了下面的代码。
# since # ncFile$dim$time$units say: [1] "days since 1900-1-1"
daysFromDate <- function(data1, data2="1900-01-01")
{
round(as.numeric(difftime(data1,data2,units = "days")))
}
#study area:
lon <- c(40.25, 48)
lat <- c(16, 24.25)
myTime <- c(daysFromDate("2008-01-16"), daysFromDate("2011-12-31"))
varName <- "spei"
require(ncdf4)
require(RCurl)
x <- getBinaryURL("http://digital.csic.es/bitstream/10261/104742/3/SPEI_01.nc")
ncFile <- nc_open(x)
LonIdx <- which( ncFile$dim$lon$vals >= lon[1] | ncFile$dim$lon$vals <= lon[2])
LatIdx <- which( ncFile$dim$lat$vals >= lat[1] & ncFile$dim$lat$vals <= lat[2])
TimeIdx <- which( ncFile$dim$time$vals >= myTime[1] & ncFile$dim$time$vals <= myTime[2])
MyVariable <- ncvar_get( ncFile, varName)[ LonIdx, LatIdx, TimeIdx]
我认为将返回数据框,以便我能够轻松地操作数据(例如 - 检查相关性或创建绘图)。 不幸的是,已经返回了三维列表。 如何使用以下列X-Y-Time1-Time2 -...
将其重新格式化为数据框因此,示例数据将如下所示
X Y 2014-01-01 2014-01-02 2014-01-02
50 17 0.5 0.4 0.3
其中0.5,0.4和0.3是示例变量值
或许有不同的解决方案?
答案 0 :(得分:2)
好的,请尝试以下代码,但它假设范围是密集的。我将lon
测试从or
更改为and
require(ncdf4)
nc <- nc_open("SPEI_01.nc")
print(nc)
lon <- ncvar_get(nc, "lon")
lat <- ncvar_get(nc, "lat")
time <- ncvar_get(nc, "time")
lonIdx <- which( lon >= 40.25 & lon <= 48.00)
latIdx <- which( lat >= 16.00 & lat <= 24.25)
myTime <- c(daysFromDate("2008-01-16"), daysFromDate("2011-12-31"))
timeIdx <- which(time >= myTime[1] & time <= myTime[2])
data <- ncvar_get(nc, "spei")[lonIdx, latIdx, timeIdx]
indices <- expand.grid(lon[lonIdx], lat[latIdx], time[timeIdx])
print(length(indices))
class(indices)
summary(indices)
str(indices)
df <- data.frame(cbind(indices, as.vector(data)))
summary(df)
str(df)
更新
好吧,看起来我知道你想要什么,但是直接解决了。到目前为止我所得到的是:使用split()函数或data.table包拆分数据框。在通过X&amp; Y分割之后,您将获得小数据帧的列表,其中X&amp; Y是给定帧的常量。可能有可能将它们转置并重新组合,但我不知道如何。最好继续使用数据作为列,列表嵌套,可以展平,这里是用于分割 R 的链接:http://www.uni-kiel.de/psychologie/rexrepos/posts/dfSplitMerge.html代码,与前一个示例相同
require(data.table)
colnames(df) <- c("X","Y","Time","spei")
df$Time <- as.Date(df$Time, origin="1900-01-01")
dt <- as.data.table(df)
summary(dt)
# Taken from https://github.com/Rdatatable/data.table/issues/1389
# x data.table
# f use `by` argument instead - unlike data.frame
# drop logical default FALSE will include `by` columns in resulting data.tables - unlike data.frame
# by character column names on which split into lists
# flatten logical default FALSE will result in recursive nested list having data.table as leafs
# ... ignored
split.data.table <- function(x, f, drop = FALSE, by, flatten = FALSE, ...){
if(missing(by) && !missing(f)) by = f
stopifnot(!missing(by), is.character(by), is.logical(drop), is.logical(flatten), !".ll" %in% names(x), by %in% names(x), !"nm" %in% by)
if(!flatten){
.by = by[1L]
tmp = x[, list(.ll=list(.SD)), by = .by, .SDcols = if(drop) setdiff(names(x), .by) else names(x)]
setattr(ll <- tmp$.ll, "names", tmp[[.by]])
if(length(by) > 1L) return(lapply(ll, split.data.table, drop = drop, by = by[-1L])) else return(ll)
} else {
tmp = x[, list(.ll=list(.SD)), by=by, .SDcols = if(drop) setdiff(names(x), by) else names(x)]
setattr(ll <- tmp$.ll, 'names', tmp[, .(nm = paste(.SD, collapse = ".")), by = by, .SDcols = by]$nm)
return(ll)
}
}
# here is data.table split
q <- split.data.table(dt, by = c("X","Y"), drop=FALSE)
str(q)
# here is data frame split
qq <- split(df, list(df$X, df$Y))
str(qq)